TY - JOUR
T1 - Subcutaneous lipectomy causes a metabolic syndrome in hamsters
AU - Weber, R. V.
AU - Buckley, M. C.
AU - Fried, S. K.
AU - Kral, J. G.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2000
Y1 - 2000
N2 - The insulin resistance syndrome X is related to excess intra-abdominal adipose tissue. With lipectomy of >50% of subcutaneous adipose tissue (SQAT) in nonhibernating, adult female Syrian hamsters on high-fat (HF; 50 calorie%) diet and measurements of oral glucose tolerance, oral [14C]oleic acid disposal, serum triglycerides, serum leptin, liver fat, perirenal (PR) adipose tissue cellularity, and body composition, we studied the role of SQAT. Sham-operated (S) animals on HF or low-fat (LF; 12.5 calorie%) diets served as controls. After 3 mo there was no visible regrowth of SQAT but HF diet led to similar levels of body weight and body fat in lipectomized and sham-operated animals. Lipectomized (L) animals had more intra-abdominal fat as a percentage of total body fat, higher insulinemic index, a strong trend toward increased liver fat content, and markedly elevated serum triglycerides compared with S-HF and S-LF. Liver and PR adipose tissue uptake of fatty acid were similar in L-HF and S-HF but reduced vs. S-LF, and were inversely correlated with liver fat content and insulin sums during the oral glucose tolerance test. In summary, lipectomy of SQAT led to compensatory fat accumulation implying regulation of total body fat mass. In conjunction with HF diet these lipectomized hamsters developed a metabolic syndrome with significant hypertriglyceridemia, relative increase in intra-abdominal fat, and insulin resistance. We propose that SQAT, via disposal and storage of excess ingested energy, acts as a metabolic sink and protects against the metabolic syndrome of obesity.
AB - The insulin resistance syndrome X is related to excess intra-abdominal adipose tissue. With lipectomy of >50% of subcutaneous adipose tissue (SQAT) in nonhibernating, adult female Syrian hamsters on high-fat (HF; 50 calorie%) diet and measurements of oral glucose tolerance, oral [14C]oleic acid disposal, serum triglycerides, serum leptin, liver fat, perirenal (PR) adipose tissue cellularity, and body composition, we studied the role of SQAT. Sham-operated (S) animals on HF or low-fat (LF; 12.5 calorie%) diets served as controls. After 3 mo there was no visible regrowth of SQAT but HF diet led to similar levels of body weight and body fat in lipectomized and sham-operated animals. Lipectomized (L) animals had more intra-abdominal fat as a percentage of total body fat, higher insulinemic index, a strong trend toward increased liver fat content, and markedly elevated serum triglycerides compared with S-HF and S-LF. Liver and PR adipose tissue uptake of fatty acid were similar in L-HF and S-HF but reduced vs. S-LF, and were inversely correlated with liver fat content and insulin sums during the oral glucose tolerance test. In summary, lipectomy of SQAT led to compensatory fat accumulation implying regulation of total body fat mass. In conjunction with HF diet these lipectomized hamsters developed a metabolic syndrome with significant hypertriglyceridemia, relative increase in intra-abdominal fat, and insulin resistance. We propose that SQAT, via disposal and storage of excess ingested energy, acts as a metabolic sink and protects against the metabolic syndrome of obesity.
KW - Fatty liver
KW - High-fat diet
KW - Insulin resistance
KW - Leptin
KW - Syndrome X
KW - Triglycerides
UR - http://www.scopus.com/inward/record.url?scp=0033834284&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033834284&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.2000.279.3.r936
DO - 10.1152/ajpregu.2000.279.3.r936
M3 - Article
C2 - 10956251
AN - SCOPUS:0033834284
SN - 0363-6119
VL - 279
SP - R936-R943
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 3 48-3
ER -