SUAV:Q - An improved design for a transformable solar-powered UAV

Ruben D'Sa, Devon Jenson, Travis Henderson, Jack Kilian, Bobby Schulz, Michael Calvert, Thaine Heller, Nikolaos Papanikolopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Throughout the wide range of aerial robot related applications, selecting a particular airframe is often a tradeoff. Fixed-wing small-scale unmanned aerial vehicles (UAVs) typically have difficulty surveying at low altitudes while quadrotor UAVs, having more maneuverability, suffer from limited flight time. Recent prior work [1] proposes a solar-powered small-scale aerial vehicle designed to transform between fixedwing and quad-rotor configurations. Surplus energy collected and stored while in a fixed-wing configuration is utilized while in a quad-rotor configuration. This paper presents an improvement to the robot's design in [1] by pursuing a modular airframe, an optimization of the hybrid propulsion system, and solar power electronics. Two prototypes of the robot have been fabricated for independent testing of the airframe in fixed-wing and quad-rotor states. Validation of the solar power electronics and hybrid propulsion system designs were demonstrated through a combination of simulation and empirical data from prototype hardware.

Original languageEnglish (US)
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1609-1615
Number of pages7
ISBN (Electronic)9781509037629
DOIs
StatePublished - Nov 28 2016
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: Oct 9 2016Oct 14 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period10/9/1610/14/16

Bibliographical note

Funding Information:
This material is based upon work supported by the National Science Foundation through grants #IIP-0934327, #IIS-1017344, #IIP-1332133, #IIS-1427014, #IIP-1432957, #OISE-1551059, #CNS-1514626, #CNS-1531330, and #CNS-1544887. Ruben D'Sa was supported by a National Science Foundation Graduate Research Fellowship No. 00039202.

Publisher Copyright:
© 2016 IEEE.

Fingerprint

Dive into the research topics of 'SUAV:Q - An improved design for a transformable solar-powered UAV'. Together they form a unique fingerprint.

Cite this