Study of brain function and bioenergetics using fMRI and in vivo MRS at high fields

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The greatest merit of magnetic resonance (MR) methodology applied to medicine is its capabilities of measuring a variety of physiological parameters in vivo. MR imaging (MRI) with unique imaging contrasts can provide vital information which tightly links to brain functions at both normal and diseased states. In contrast, in vivo MR spectroscopy (MRS) is capable of determining metabolites, bioenergetics and chemical reaction rates in brain noninvasively. These capabilities are further enhanced at high/ultrahigh magnetic fields because of significant gain in MR sensitivity and improvements in the spectral resolution of MRS and imaging contrasts. However, MR research also faces many technical challenges which have attracted many scientists from interdisciplinary research backgrounds to find the optimal solutions. Recent progresses in this research field have showed great promise of MRI/MRS for studying brain function, physiology, and neurochemistry. This talk will discuss the developed MR technologies and their applications in brain study at high fields.

Original languageEnglish (US)
Title of host publicationProceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
Pages4174-4177
Number of pages4
StatePublished - 2005
Event2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005 - Shanghai, China
Duration: Sep 1 2005Sep 4 2005

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume7 VOLS
ISSN (Print)0589-1019

Other

Other2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
Country/TerritoryChina
CityShanghai
Period9/1/059/4/05

Fingerprint

Dive into the research topics of 'Study of brain function and bioenergetics using fMRI and in vivo MRS at high fields'. Together they form a unique fingerprint.

Cite this