Structure of outer hair cell stereocilia links in the chinchilla

Vladimir Tsuprun, Peter Santi

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The structure of side, tip, and 'attachment' links of chinchilla outer hair cell (OHC) stereocilia was studied by transmission and scanning electron microscopy using tannic acid and Cuprolinic blue histochemical procedures. Tannic acid, which interacts with many different types of proteins and glycoproteins irrespective of their electrical charge, showed strong reactivity for the central area of the side links and weak reactivity for the marginal area of these links adjacent to the stereocilia membrane. Tannic acid treatment revealed the tip links as thin strands, about 5 nm thick. Attachment links were poorly visualized after tannic acid treatment and appeared as sparse filamentous strands at tips of the tallest OHC stereocilia. Cuprolinic blue, at a high critical electrolyte concentration, reacted with strongly negative, primarily sulfated, carbohydrate residues of glycoconjugate macromolecules. In contrast to the tannic acid treatment, the central portions of the OHC stereocilia side links were unstained after Cuprolinic blue treatment; however, membrane-associated ends of these links were darkly stained. The tip links showed a similar appearance as after tannic acid treatment; however, Cuprolinic blue revealed an electron-dense substructure at both ends of its insertion into the stereocilia. Cuprolinic blue reactive structures were also observed as attachment links only at the tips of the OHC stereocilia of the tallest row in each bundle. These structures formed a crown-like array around the tip of each stereocilium. Their primary function appears to be attachment of type B fibrils of the tectorial membrane to the tallest OHC stereocilia. Cuprolinic blue reactive structures of the side, tip, and attachment links appear to contain acidic, sulfated residues of proteoglycans or glycoproteins. These structures may function as connective elements between the stereocilia links and the hair cell cytoskeleton.

Original languageEnglish (US)
Pages (from-to)517-528
Number of pages12
JournalJournal of Neurocytology
Volume27
Issue number7
DOIs
StatePublished - Dec 1 1998

Fingerprint Dive into the research topics of 'Structure of outer hair cell stereocilia links in the chinchilla'. Together they form a unique fingerprint.

Cite this