Structure and property of interfaces in ARB Cu/Nb laminated composites

J. Wang, K. Kang, R. F. Zhang, S. J. Zheng, I. J. Beyerlein, N. A. Mara

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


Bulk Cu/Nb multilayered composites with high interfacial content have been synthesized via the accumulative roll bonding (ARB) method. Experimental characterization shows that these multilayers with submicronmeter and nanometer individual layer thicknesses contain a predominant, steady-state interface with the Kurdjumov-Sachs orientation relationship joining the mutual {112} planes of Cu and Nb. In this article, we overview microscopy and simulation results on the structure of this interface at an atomic level and its influence on interface properties, such as interface shear resistance and its ability to absorb point defects and nucleate dislocations nucleation.

Original languageEnglish (US)
Pages (from-to)1208-1217
Number of pages10
Issue number10
StatePublished - Oct 2012

Bibliographical note

Funding Information:
This work was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number 2008LANL1026. For the defect characterization method development, J.W. acknowledges support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD) projects DR20110029 and ER20110573.


Dive into the research topics of 'Structure and property of interfaces in ARB Cu/Nb laminated composites'. Together they form a unique fingerprint.

Cite this