Structure-activity relationships of the melanocortin tetrapeptide Ac-His-D-Phe-Arg-Trp-NH2 at the mouse melanocortin receptors. 4. Modifications at the Trp position

Jerry Ryan Holder, Zhimin Xiang, Rayna M. Bauzo, Carrie Haskell-Luevano

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The endogenous melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," postulated to be important for melanocortin receptor molecular recognition and stimulation. Herein, we report a tetrapeptide library, based upon the template Ac-His-D-Phe-Arg-Trp-NH2, consisting of 20 members that have been modified at the Trp9 position (α-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. Results from this study yielded compounds that ranged in pharmacological properties from equipotent to a loss of melanocortin receptor activity at up to 100 μM concentrations. Interestingly, modification of the Trp9 in the tetrapeptide template at the MC1R resulted in only up to a 220-fold potency change, while at the MC4R and MC5R, up to a 9700-fold decrease in potency was observed, suggesting the MC1R is more tolerant of the modifications examined herein. The most notable results of this study include identification that the Trp9 indole moiety in the tetrapeptide template is important for melanocortin-3 receptor agonist potency, and that this position can be used to design melanocortin ligands possessing receptor selectivity for the peripherally expressed MC1 and MC5 versus the centrally expressed MC3 and MC4 receptors. Specifically, the Ac-His-D-Phe-Arg-Tic-NH2 and the Ac-His-D-Phe-Arg-Bip-NH2 tetrapeptides possessed nanomolar MC1R and MC5R potency but micromolar MC3R and MC4R agonist potency. Additionally, these studies identified that substitution of the Trp amino acid with either Nal(2′) or D-Nal(2′) resulted in equipotent melanocortin receptor potency, suggesting that the chemically reactive Trp indole side chain may be replaced with the nonreactive Nal(2′) moiety for the design of nonpeptide melanocortin receptor agonists.

Original languageEnglish (US)
Pages (from-to)5736-5744
Number of pages9
JournalJournal of medicinal chemistry
Volume45
Issue number26
DOIs
StatePublished - Dec 19 2002

Fingerprint

Dive into the research topics of 'Structure-activity relationships of the melanocortin tetrapeptide Ac-His-D-Phe-Arg-Trp-NH2 at the mouse melanocortin receptors. 4. Modifications at the Trp position'. Together they form a unique fingerprint.

Cite this