Abstract
Cationic polymers have the ability to bind plasmid DNA (pDNA) through electrostatic interactions and condense it into particles that can be readily endocytosed by cultured cells. The effects that polycation structure has on toxicity and gene delivery efficiency are investigated here by synthesizing a series of amidine-based polycations that contain the carbohydrates D-trehalose and β-cyclodextrin (CD) within the polycation backbone. The carbohydrate size (trehalose vs CD) and its distance from the charge centers affect the gene delivery behavior in BHK-21 cells. It is found that as the charge center is further removed from the carbohydrate unit, the toxicity is increased. Also, as the size of the carbohydrate moiety is enlarged from trehalose to β-cyclodextrin, the toxicity is reduced. The absence of a carbohydrate in the polycation produces high toxicity. All carbohydrate polycations transfect BHK-21 cells to approximately the same level of gene expression.
Original language | English (US) |
---|---|
Pages (from-to) | 247-254 |
Number of pages | 8 |
Journal | Bioconjugate Chemistry |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - 2003 |