TY - JOUR
T1 - Structural characterization and pharmacology of a potent (Cys101-Cys119, Cys110-Cys117) bicyclic agouti-related protein (AGRP) melanocortin receptor antagonist
AU - Wilczynski, Andrzej
AU - Wang, Xiang S.
AU - Bauzo, Rayna M.
AU - Xiang, Zhimin
AU - Shaw, Amanda M.
AU - Millard, William J.
AU - Richards, Nigel G.
AU - Edison, Arthur S.
AU - Haskell-Luevano, Carrie
PY - 2004/11/4
Y1 - 2004/11/4
N2 - Agouti-related protein (AGRP) is one of two known naturally occurring antagonists of G-protein coupled receptors. AGRP is synthesized in the brain and is an antagonist of the melanocortin-3 and -4 receptors (MC3R, MC4R). These three proteins are involved in the regulation of energy homeostasis and obesity in both mice and humans. The human AGRP protein is 132 amino acids and contains five disulfide bridges in the C-terminal domain. Previous reports of the NMR structures of hAGRP(87-132) and a truncated 34 amino acid form consisting of four disulfide bridges identified that AGRP contains an inhibitor cystine knot (ICK) structural fold, and that is the first mammalian example. Herein, we report a bicyclic hAGRP analogue that, when compared to hAGRP(87-132), possesses equal binding affinity but is 80-fold less potent at the mouse MC4R. Using NMR, computer assisted molecular modeling (CAMM), and cluster analysis, we have identified five structural families, two of which are highly populated, of this bicyclic hAGRP analogue. Computational docking experiments of this bicyclic hAGRP derivative, using a three-dimensional homology molecular model of the mouse MC4R, identified that three of the five structural families could be docked into the MC4R without problems from steric hindrance. Those three docked mMC4R-bicyclic hAGRP family structures were compared with putative hAGRP(87-132) ligand - receptor interactions previously reported (Wilczynski et al. J. Med. Chem. 2004,47, 2194) in attempts to identify a "bioactive" conformation of the bicyclic hAGRP peptide and account for the 80-fold decreased ligand potency compared to hAGRP(87-132).
AB - Agouti-related protein (AGRP) is one of two known naturally occurring antagonists of G-protein coupled receptors. AGRP is synthesized in the brain and is an antagonist of the melanocortin-3 and -4 receptors (MC3R, MC4R). These three proteins are involved in the regulation of energy homeostasis and obesity in both mice and humans. The human AGRP protein is 132 amino acids and contains five disulfide bridges in the C-terminal domain. Previous reports of the NMR structures of hAGRP(87-132) and a truncated 34 amino acid form consisting of four disulfide bridges identified that AGRP contains an inhibitor cystine knot (ICK) structural fold, and that is the first mammalian example. Herein, we report a bicyclic hAGRP analogue that, when compared to hAGRP(87-132), possesses equal binding affinity but is 80-fold less potent at the mouse MC4R. Using NMR, computer assisted molecular modeling (CAMM), and cluster analysis, we have identified five structural families, two of which are highly populated, of this bicyclic hAGRP analogue. Computational docking experiments of this bicyclic hAGRP derivative, using a three-dimensional homology molecular model of the mouse MC4R, identified that three of the five structural families could be docked into the MC4R without problems from steric hindrance. Those three docked mMC4R-bicyclic hAGRP family structures were compared with putative hAGRP(87-132) ligand - receptor interactions previously reported (Wilczynski et al. J. Med. Chem. 2004,47, 2194) in attempts to identify a "bioactive" conformation of the bicyclic hAGRP peptide and account for the 80-fold decreased ligand potency compared to hAGRP(87-132).
UR - http://www.scopus.com/inward/record.url?scp=7444238720&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=7444238720&partnerID=8YFLogxK
U2 - 10.1021/jm049620r
DO - 10.1021/jm049620r
M3 - Article
C2 - 15509165
AN - SCOPUS:7444238720
SN - 0022-2623
VL - 47
SP - 5662
EP - 5673
JO - Journal of medicinal chemistry
JF - Journal of medicinal chemistry
IS - 23
ER -