Abstract
Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.
Original language | English (US) |
---|---|
Pages (from-to) | 8719-8732 |
Number of pages | 14 |
Journal | Nucleic acids research |
Volume | 50 |
Issue number | 15 |
DOIs | |
State | Published - Aug 26 2022 |
Bibliographical note
Publisher Copyright:© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
PubMed: MeSH publication types
- Journal Article
- Research Support, N.I.H., Extramural
- Research Support, Non-U.S. Gov't