Abstract
We report the fabrication and measurements of ionic liquid gated Hall bar devices prepared on the ab face of a thin Ca3Ru207 flake exfoliated from bulk single crystals that were grown by a floating zone method. The devices were categorized into two types: Those with their electrical transport properties dominated by r-axis transport in type A or that of the in-plane in type B devices. Bulk physical phenomena, including a magnetic transition near 56 K, a structural and metal-insulator transition at a slightly lower temperature, as well as the emergence of a highly unusual metallic state as the temperature is further lowered, were found in both types of devices. However, the Shubnikov-de Haas oscillations were found in type A but not type B devices, most likely due to enhanced disorder on the flake surface. Finally, the ionic liquid gating of a type B device revealed a shift in critical temperature of the structural and metal-insulator transition, suggesting that this transition is tunable by the electric field effect.
Original language | English (US) |
---|---|
Article number | 253503 |
Journal | Applied Physics Letters |
Volume | 104 |
Issue number | 25 |
DOIs | |
State | Published - Jun 23 2014 |
Bibliographical note
Publisher Copyright:© 2014 AIP Publishing LLC.