Structural and kinematic evolution of the Yukon-Tanana upland tectonites, east-central Alaska: A record of late Paleozoic to Mesozoic crustal assembly

V. L. Hansen, C. Dusel-Bacon

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

The Yukon-Tanana terrane, the largest tectonostratigraphic terrane in the northern North American Cordillera, is polygenetic and not a single terrane. Lineated and foliated (L-S) tectonites, which characterize the Yukon-Tanana terrane, record multiple deformations and formed at different times. We document the polyphase history recorded by L-S tectonites within the Yukon-Tanana upland, east-central Alaska. These upland tectonites compose a heterogeneous assemblage of deformed igneous and metamorphic rocks that form the Alaskan part of what has been called the Yukon-Tanana composite terrane. We build on previous kinematic data and establish the three-dimensional architecture of the upland tectonites through kinematic and structural analysis of more than 250 oriented samples, including quartz c-axis fabric analysis of 39 samples. Through this study we distinguish allochthonous tectonites from parautochthonous tectonites within the Yukon-Tanana upland. The upland tectonites define a regionally coherent stacking order: from bottom to top, they are lower plate North American parautochthonous attenuated continental margin; continentally derived marginal-basin strata; and upper plate ocean-basin and island-arc rocks, including some continental basement rocks. We delineate three major deformation events in time, space, and structural level across the upland from the United States-Canada border to Fairbanks, Alaska: (1) pre-Early Jurassic (>212 Ma) northeast-directed, apparent margin-normal contraction that affected oceanic rocks; (2) late Early to early Middle Jurassic (>188-185 Ma) northwest-directed, apparent margin-parallel contraction and imbrication that resulted in juxtaposition of the allochthonous tectonites with parautochthonous continental rocks; and (3) Early Cretaceous (135-110 Ma) southeast-directed crustal extension that resulted in exposure of the structurally deepest, parautochthonous continental rocks. The oldest event represents deformation within a west-dipping (present coordinates) Permian-Triassic subduction zone. The second event records Early to Middle Jurassic collision of the arc and subduction complex with North American crust, and the third event reflects mid-Cretaceous southeast-directed crustal extension. Events one and two can be recognized and correlated through southern Yukon, even though this region was affected by mid-Cretaceous dextral shear along steep northwest-striking faults. Our data support a model of crustal assembly originally proposed by D. Tempelman-Kluit in which previously deformed allochthonous rocks were thrust over parautochthonous rocks of the attenuated North American margin in Middle Jurassic time. Approximately 50 m.y. after tectonic accretion, east-central Alaska was dissected by crustal extension, exposing overthrust parautochthonous strata.

Original languageEnglish (US)
Pages (from-to)211-230
Number of pages20
JournalBulletin of the Geological Society of America
Volume110
Issue number2
DOIs
StatePublished - Feb 1998

Fingerprint

Dive into the research topics of 'Structural and kinematic evolution of the Yukon-Tanana upland tectonites, east-central Alaska: A record of late Paleozoic to Mesozoic crustal assembly'. Together they form a unique fingerprint.

Cite this