TY - JOUR
T1 - Structural and functional mimic of galactose oxidase by a copper complex of a sterically demanding [N2O2] ligand.
AU - John, Alex
AU - Shaikh, Mobin M.
AU - Ghosh, Prasenjit
PY - 2008/6/7
Y1 - 2008/6/7
N2 - A structural and functional mimic of the galactose oxidase (GOase) enzyme active-site by a copper complex supported over a sterically demanding ligand having [N2O2] donor sites is reported. Specifically, the binding of the histidine (496 and 581) and tyrosine (272 and 495) residues to the copper center in a square-pyramidal fashion in the active-site of galactose oxidase (GOase) enzyme has been modeled in a copper complex, ([(3-tert-butyl-5-methyl-2-hydoxybenzyl)(3'-tert-butyl-5'-methyl-2'-oxobenzyl)(2-pyridylmethyl)]amine)Cu(OAc)) (1b), stabilized over a sterically demanding ligand in which the two phenolate-O atoms mimicked the tyrosine binding while an amine-N and pyridyl-N atoms emulated the histidine binding to the metal center, similar to that in the enzyme active-site. Furthermore, the copper complex 1b is found to be an effective functional model of the enzyme as it efficiently catalyzed the chemoselective oxidation of primary alcohols to aldehydes in high turnover numbers under ambient conditions. An insight into the nature of the active-species was obtained by EPR and CV studies, which in conjunction with the DFT studies, revealed that the active-species is an anti-ferromagnetically coupled diamagnetic radical cation, (1)1b+, obtained by one electron oxidation at the equatorial phenolate-O atom of the ligand in the 1b complex.
AB - A structural and functional mimic of the galactose oxidase (GOase) enzyme active-site by a copper complex supported over a sterically demanding ligand having [N2O2] donor sites is reported. Specifically, the binding of the histidine (496 and 581) and tyrosine (272 and 495) residues to the copper center in a square-pyramidal fashion in the active-site of galactose oxidase (GOase) enzyme has been modeled in a copper complex, ([(3-tert-butyl-5-methyl-2-hydoxybenzyl)(3'-tert-butyl-5'-methyl-2'-oxobenzyl)(2-pyridylmethyl)]amine)Cu(OAc)) (1b), stabilized over a sterically demanding ligand in which the two phenolate-O atoms mimicked the tyrosine binding while an amine-N and pyridyl-N atoms emulated the histidine binding to the metal center, similar to that in the enzyme active-site. Furthermore, the copper complex 1b is found to be an effective functional model of the enzyme as it efficiently catalyzed the chemoselective oxidation of primary alcohols to aldehydes in high turnover numbers under ambient conditions. An insight into the nature of the active-species was obtained by EPR and CV studies, which in conjunction with the DFT studies, revealed that the active-species is an anti-ferromagnetically coupled diamagnetic radical cation, (1)1b+, obtained by one electron oxidation at the equatorial phenolate-O atom of the ligand in the 1b complex.
UR - http://www.scopus.com/inward/record.url?scp=48849090372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48849090372&partnerID=8YFLogxK
U2 - 10.1039/b801496e
DO - 10.1039/b801496e
M3 - Article
C2 - 18478142
AN - SCOPUS:43949107918
SN - 1477-9226
SP - 2815
EP - 2824
JO - Dalton transactions (Cambridge, England : 2003)
JF - Dalton transactions (Cambridge, England : 2003)
IS - 21
ER -