Structural and electrostatic complexity at a pentacenc/insulator interface

Kanan Puntambekar, Jinping Dong, Greg Haugstad, C. Daniel Frisbie

Research output: Contribution to journalArticlepeer-review

137 Scopus citations


The properties of organic-semiconductor/insulator (O/I) interfaces are critically important to the operation of organic thin-film transistors (OTFTs) currently being developed for printed flexible electronics. Here we report striking observations of structural defects and correlated electrostatic- potential variations at the interface between the benchmark organic semiconductor pentacene and a common insulator, silicon dioxide. Using an unconventional mode of lateral force microscopy, we generate high-contrast images of the grain-boundary (GB) network in the first pentacene moaolayer. Concurrent imaging by Kelvin probe force microscopy reveals localized surface-potential wells at the GBs, indicating that GBs will serve as charge-carrier (hole) traps. Scanning probe microscopy and chemical etching also demonstrate that slightly thicker pentacene films have domains with high line-dislocation densities. These domains produce significant changes in surface potential across the film. The correlation of structural and electrostatic complexity at O/I interfaces has important implications for understanding electrical transport in OTFTs and for defining strategies to improve device performance.

Original languageEnglish (US)
Pages (from-to)879-884
Number of pages6
JournalAdvanced Functional Materials
Issue number7
StatePublished - May 2 2006


Dive into the research topics of 'Structural and electrostatic complexity at a pentacenc/insulator interface'. Together they form a unique fingerprint.

Cite this