Strong valid inequalities for fluence map optimization problem under dose-volume restrictions

Ali T. Tuncel, Felisa Preciado, Ronald L. Rardin, Mark Langer, Jean Philippe P. Richard

Research output: Contribution to journalArticle

12 Scopus citations

Abstract

Fluence map optimization problems are commonly solved in intensity modulated radiation therapy (IMRT) planning. We show that, when subject to dose-volume restrictions, these problems are NP-hard and that the linear programming relaxation of their natural mixed integer programming formulation can be arbitrarily weak. We then derive strong valid inequalities for fluence map optimization problems under dose-volume restrictions using disjunctive programming theory and show that strengthening mixed integer programming formulations with these valid inequalities has significant computational benefits.

Original languageEnglish (US)
Pages (from-to)819-840
Number of pages22
JournalAnnals of Operations Research
Volume196
Issue number1
DOIs
StatePublished - Jul 1 2012
Externally publishedYes

Fingerprint Dive into the research topics of 'Strong valid inequalities for fluence map optimization problem under dose-volume restrictions'. Together they form a unique fingerprint.

  • Cite this