Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Vibration energy harvesters convert the energy of ambient, random vibration into electrical power often using piezoelectric transduction. The stochastic dynamics of a piezoelectric harvester with parameteric uncertainties is yet to be fully explored in the nonequilibrium regime. Motivated by mathematical results that establish the counterintuitive phenomenon of stabilization of response in certain nonlinear systems using noise, we investigate the stochastic stability of a generic harvester in the linear and the monostable nonlinear regimes excited by multiplicative noise characterized by both Brownian and the Lévy stable distributions. First, a lower bound on the magnitude of noise intensity that guarantees exponential stability almost surely, is obtained analytically as an inequality in terms of system parameters in the linear case. This result is validated numerically using the Euler-Maruyama scheme. Next, noise-induced stabilization in the harvester dynamics is demonstrated numerically for both the linear and nonlinear cases wherein Lévy noise was found to achieve stabilization at lower noise intensities than Brownian noise. Additionally, the inclusion of a nonlinear stiffness does not have an appreciable affect on the stabilization behavior. The results indicate that stabilization may be achieved using noise and are expected to be useful in harvester design.

Original languageEnglish (US)
Title of host publicationControl and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Volume2
ISBN (Electronic)9780791851906
DOIs
StatePublished - Jan 1 2018
EventASME 2018 Dynamic Systems and Control Conference, DSCC 2018 - Atlanta, United States
Duration: Sep 30 2018Oct 3 2018

Other

OtherASME 2018 Dynamic Systems and Control Conference, DSCC 2018
CountryUnited States
CityAtlanta
Period9/30/1810/3/18

Fingerprint

Harvesters
Stabilization
Asymptotic stability
Nonlinear systems
Stiffness

Cite this

Ramakrishnan, S., & Edlund, C. (2018). Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise. In Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems (Vol. 2). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DSCC2018-9216

Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise. / Ramakrishnan, Subramanian; Edlund, Connor.

Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. Vol. 2 American Society of Mechanical Engineers (ASME), 2018.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ramakrishnan, S & Edlund, C 2018, Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise. in Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. vol. 2, American Society of Mechanical Engineers (ASME), ASME 2018 Dynamic Systems and Control Conference, DSCC 2018, Atlanta, United States, 9/30/18. https://doi.org/10.1115/DSCC2018-9216
Ramakrishnan S, Edlund C. Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise. In Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. Vol. 2. American Society of Mechanical Engineers (ASME). 2018 https://doi.org/10.1115/DSCC2018-9216
Ramakrishnan, Subramanian ; Edlund, Connor. / Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise. Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems. Vol. 2 American Society of Mechanical Engineers (ASME), 2018.
@inproceedings{99dda44d65af4b1bb8aa8d3c18e6e236,
title = "Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise",
abstract = "Vibration energy harvesters convert the energy of ambient, random vibration into electrical power often using piezoelectric transduction. The stochastic dynamics of a piezoelectric harvester with parameteric uncertainties is yet to be fully explored in the nonequilibrium regime. Motivated by mathematical results that establish the counterintuitive phenomenon of stabilization of response in certain nonlinear systems using noise, we investigate the stochastic stability of a generic harvester in the linear and the monostable nonlinear regimes excited by multiplicative noise characterized by both Brownian and the L{\'e}vy stable distributions. First, a lower bound on the magnitude of noise intensity that guarantees exponential stability almost surely, is obtained analytically as an inequality in terms of system parameters in the linear case. This result is validated numerically using the Euler-Maruyama scheme. Next, noise-induced stabilization in the harvester dynamics is demonstrated numerically for both the linear and nonlinear cases wherein L{\'e}vy noise was found to achieve stabilization at lower noise intensities than Brownian noise. Additionally, the inclusion of a nonlinear stiffness does not have an appreciable affect on the stabilization behavior. The results indicate that stabilization may be achieved using noise and are expected to be useful in harvester design.",
author = "Subramanian Ramakrishnan and Connor Edlund",
year = "2018",
month = "1",
day = "1",
doi = "10.1115/DSCC2018-9216",
language = "English (US)",
volume = "2",
booktitle = "Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems",
publisher = "American Society of Mechanical Engineers (ASME)",

}

TY - GEN

T1 - Stochastic stability of a piezoelectric vibration energy harvester and stabilization using noise

AU - Ramakrishnan, Subramanian

AU - Edlund, Connor

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Vibration energy harvesters convert the energy of ambient, random vibration into electrical power often using piezoelectric transduction. The stochastic dynamics of a piezoelectric harvester with parameteric uncertainties is yet to be fully explored in the nonequilibrium regime. Motivated by mathematical results that establish the counterintuitive phenomenon of stabilization of response in certain nonlinear systems using noise, we investigate the stochastic stability of a generic harvester in the linear and the monostable nonlinear regimes excited by multiplicative noise characterized by both Brownian and the Lévy stable distributions. First, a lower bound on the magnitude of noise intensity that guarantees exponential stability almost surely, is obtained analytically as an inequality in terms of system parameters in the linear case. This result is validated numerically using the Euler-Maruyama scheme. Next, noise-induced stabilization in the harvester dynamics is demonstrated numerically for both the linear and nonlinear cases wherein Lévy noise was found to achieve stabilization at lower noise intensities than Brownian noise. Additionally, the inclusion of a nonlinear stiffness does not have an appreciable affect on the stabilization behavior. The results indicate that stabilization may be achieved using noise and are expected to be useful in harvester design.

AB - Vibration energy harvesters convert the energy of ambient, random vibration into electrical power often using piezoelectric transduction. The stochastic dynamics of a piezoelectric harvester with parameteric uncertainties is yet to be fully explored in the nonequilibrium regime. Motivated by mathematical results that establish the counterintuitive phenomenon of stabilization of response in certain nonlinear systems using noise, we investigate the stochastic stability of a generic harvester in the linear and the monostable nonlinear regimes excited by multiplicative noise characterized by both Brownian and the Lévy stable distributions. First, a lower bound on the magnitude of noise intensity that guarantees exponential stability almost surely, is obtained analytically as an inequality in terms of system parameters in the linear case. This result is validated numerically using the Euler-Maruyama scheme. Next, noise-induced stabilization in the harvester dynamics is demonstrated numerically for both the linear and nonlinear cases wherein Lévy noise was found to achieve stabilization at lower noise intensities than Brownian noise. Additionally, the inclusion of a nonlinear stiffness does not have an appreciable affect on the stabilization behavior. The results indicate that stabilization may be achieved using noise and are expected to be useful in harvester design.

UR - http://www.scopus.com/inward/record.url?scp=85057339964&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057339964&partnerID=8YFLogxK

U2 - 10.1115/DSCC2018-9216

DO - 10.1115/DSCC2018-9216

M3 - Conference contribution

VL - 2

BT - Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems

PB - American Society of Mechanical Engineers (ASME)

ER -