TY - JOUR

T1 - Stochastic Einstein-locality and the Bell theorems

AU - Hellman, Geoffrey

PY - 1982/12

Y1 - 1982/12

N2 - Standard proofs of generalized Bell theorems, aiming to restrict stochastic, local hidden-variable theories for quantum correlation phenomena, employ as a locality condition the requirement of conditional stochastic independence. The connection between this and the no-superluminary-action requirement of the special theory of relativity has been a topic of controversy. In this paper, we introduce an alternative locality condition for stochastic theories, framed in terms of the models of such a theory (§2). It is a natural generalization of a "light-cone determination" condition that is essentially equivalent to mathematical conditions that have been used to derive Bell inequalities in the deterministic case. Further, it is roughly equivalent to a condition proposed by Bell that, in one investigation, needed to be supplemented with a much stronger assumption in order to yield an inequality violated by some quantum mechanical predictions. It is shown here that this reflects a very general situation: from the proposed locality condition, even adding the strict anticorrelation condition and the auxiliary hypotheses needed to derive experimentally useful (and theoretically telling) inequalities, no Bell-type inequality is derivable. (These independence claims are the burden of §4.) A certain limitation on the scope of the proposed stochastic locality condition is exposed (§5), but it is found to be rather minor. The conclusion is thus supported that conditional stochastic independence, however reasonable on other grounds, is essentially stronger than what is required by the special theory. Our results stand in apparent contradiction with a class of derivations purporting to obtain generalized Bell inequalities from "locality" alone. It is shown in Appendix (B) that such proofs do not achieve their goal. This fits with our conclusion that generalized Bell theorems are not straightforward generalizations of theorems restricting deterministic hidden-variable theories, and that, in fact, such generalizations do not exist. This leaves open the possibility that a satisfactory, non-deterministic account of the quantum correlation phenomena can be given within the framework of the special theory.

AB - Standard proofs of generalized Bell theorems, aiming to restrict stochastic, local hidden-variable theories for quantum correlation phenomena, employ as a locality condition the requirement of conditional stochastic independence. The connection between this and the no-superluminary-action requirement of the special theory of relativity has been a topic of controversy. In this paper, we introduce an alternative locality condition for stochastic theories, framed in terms of the models of such a theory (§2). It is a natural generalization of a "light-cone determination" condition that is essentially equivalent to mathematical conditions that have been used to derive Bell inequalities in the deterministic case. Further, it is roughly equivalent to a condition proposed by Bell that, in one investigation, needed to be supplemented with a much stronger assumption in order to yield an inequality violated by some quantum mechanical predictions. It is shown here that this reflects a very general situation: from the proposed locality condition, even adding the strict anticorrelation condition and the auxiliary hypotheses needed to derive experimentally useful (and theoretically telling) inequalities, no Bell-type inequality is derivable. (These independence claims are the burden of §4.) A certain limitation on the scope of the proposed stochastic locality condition is exposed (§5), but it is found to be rather minor. The conclusion is thus supported that conditional stochastic independence, however reasonable on other grounds, is essentially stronger than what is required by the special theory. Our results stand in apparent contradiction with a class of derivations purporting to obtain generalized Bell inequalities from "locality" alone. It is shown in Appendix (B) that such proofs do not achieve their goal. This fits with our conclusion that generalized Bell theorems are not straightforward generalizations of theorems restricting deterministic hidden-variable theories, and that, in fact, such generalizations do not exist. This leaves open the possibility that a satisfactory, non-deterministic account of the quantum correlation phenomena can be given within the framework of the special theory.

UR - http://www.scopus.com/inward/record.url?scp=0010150357&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0010150357&partnerID=8YFLogxK

U2 - 10.1007/BF00486162

DO - 10.1007/BF00486162

M3 - Article

AN - SCOPUS:0010150357

SN - 0039-7857

VL - 53

SP - 461

EP - 503

JO - Synthese

JF - Synthese

IS - 3

ER -