TY - JOUR
T1 - Static and Dynamic Pressure-Volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome
AU - Adams, Alexander B.
AU - Çakar, Nahit
AU - Marini, John J.
PY - 2001/7
Y1 - 2001/7
N2 - INTRODUCTION: A lower inflection point, an upper inflection (or deflection) point, and respiratory system compliance can be estimated from an inspiratory static pressure-volume (SPV) curve of the respiratory system. Such data are often used to guide selection of positive end-expiratory pressure (PEEP)/tidal volume combinations. Dynamic pressure-volume (DPV) curves obtained during tidal ventilation are effortlessly displayed on modern mechanical ventilator monitors and bear a theoretical but unproven relationship to the more labor-intensive SPV curves. OBJECTIVE: Attempting to relate the SPV and DPV curves, we assessed both curves under a range of conditions in a canine oleic acid lung injury model. METHODS: Five mongrel dogs were anesthetized, paralyzed, and monitored to assure a stable preparation. Acute lung injury was induced by infusing oleic acid. SPV curves were constructed by the super-syringe method. DPV curves were constructed for a range of PEEP and inspiratory constant flow settings while ventilating at a frequency of 15 breaths/min and tidal volume of 350 mL. Functional residual capacity at PEEP = 0 cm H2O was measured by helium dilution. The change in lung volume by PEEP at 8, 16, and 24 cm H2O was measured by respiratory inductance plethysmography. RESULTS: The slope of the second portion of the DPV curve did not parallel the corresponding slope of the SPV curve. The mean lower inflection point of the SPV curve was 13.2 cm H2O, whereas the lower inflection point of the DPV curve was related to the prevailing flow and PEEP settings. The absolute lung volume during the DPV recordings exceeded (p < 0.05) that anticipated from the SPV curves by (values are mean ± SEM) 267 ± 86 mL, 425 ± 129 mL, and 494 ± 129 mL at end expiration for PEEP = 8, 16, and 24 cm H2O, respectively. CONCLUSIONS: The contours of the SPV curve are not reflected by those of the DPV curve in this model of acute lung injury. Therefore, this study indicates that DPV curve should not be used to guide the selection of PEEP/tidal volume combinations. Furthermore, an increase in end-expiratory lung volume occurs during tidal ventilation that is not reflected by the classical SPV curve, suggesting a stable component of lung volume recruitment attributable to tidal ventilation, independent of PEEP.
AB - INTRODUCTION: A lower inflection point, an upper inflection (or deflection) point, and respiratory system compliance can be estimated from an inspiratory static pressure-volume (SPV) curve of the respiratory system. Such data are often used to guide selection of positive end-expiratory pressure (PEEP)/tidal volume combinations. Dynamic pressure-volume (DPV) curves obtained during tidal ventilation are effortlessly displayed on modern mechanical ventilator monitors and bear a theoretical but unproven relationship to the more labor-intensive SPV curves. OBJECTIVE: Attempting to relate the SPV and DPV curves, we assessed both curves under a range of conditions in a canine oleic acid lung injury model. METHODS: Five mongrel dogs were anesthetized, paralyzed, and monitored to assure a stable preparation. Acute lung injury was induced by infusing oleic acid. SPV curves were constructed by the super-syringe method. DPV curves were constructed for a range of PEEP and inspiratory constant flow settings while ventilating at a frequency of 15 breaths/min and tidal volume of 350 mL. Functional residual capacity at PEEP = 0 cm H2O was measured by helium dilution. The change in lung volume by PEEP at 8, 16, and 24 cm H2O was measured by respiratory inductance plethysmography. RESULTS: The slope of the second portion of the DPV curve did not parallel the corresponding slope of the SPV curve. The mean lower inflection point of the SPV curve was 13.2 cm H2O, whereas the lower inflection point of the DPV curve was related to the prevailing flow and PEEP settings. The absolute lung volume during the DPV recordings exceeded (p < 0.05) that anticipated from the SPV curves by (values are mean ± SEM) 267 ± 86 mL, 425 ± 129 mL, and 494 ± 129 mL at end expiration for PEEP = 8, 16, and 24 cm H2O, respectively. CONCLUSIONS: The contours of the SPV curve are not reflected by those of the DPV curve in this model of acute lung injury. Therefore, this study indicates that DPV curve should not be used to guide the selection of PEEP/tidal volume combinations. Furthermore, an increase in end-expiratory lung volume occurs during tidal ventilation that is not reflected by the classical SPV curve, suggesting a stable component of lung volume recruitment attributable to tidal ventilation, independent of PEEP.
KW - ARDS
KW - Acute respiratory distress syndrome
KW - Mechanical ventilation
KW - Monitoring
KW - Oleic acid-induced lung injury
KW - Pressure-volume curves
KW - Pulmonary mechanics
KW - Ventilatory strategy
UR - http://www.scopus.com/inward/record.url?scp=0035407660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035407660&partnerID=8YFLogxK
M3 - Article
C2 - 11455939
AN - SCOPUS:0035407660
SN - 0020-1324
VL - 46
SP - 686
EP - 693
JO - Respiratory care
JF - Respiratory care
IS - 7
ER -