Abstract
The accurate description of ground- and excited-state potential energy surfaces poses a challenge for many electronic structure methods, especially in regions where strong electronic state interaction occurs. Here we introduce a new methodology, state-interaction pair-density functional theory (SI-PDFT), to target molecular systems exhibiting strong interaction of electronic states. SI-PDFT is an extension of multiconfiguration pair-density functional theory in which a set of N electronic states is generated through the diagonalization of an N × N effective Hamiltonian. We demonstrate the accuracy of the method by performing calculations on the ionic-neutral avoided crossing in lithium fluoride and the 1ππ-1πσ* avoided crossing in the H - O bond photodissociation in phenol. We show that SI-PDFT can be a useful tool in the study of photochemistry and nonadiabatic dynamics.
Original language | English (US) |
---|---|
Article number | 024106 |
Journal | Journal of Chemical Physics |
Volume | 149 |
Issue number | 2 |
DOIs | |
State | Published - Jul 14 2018 |
Bibliographical note
Publisher Copyright:© 2018 Author(s).