Startle stimuli reduce the internal model control in discrete movements

Zachary A. Wright, Mark W. Rogers, Colum D. MacKinnon, James L. Patton

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.

Fingerprint

Acoustics
Task Performance and Analysis
Remote control
Sports
Cues
Trajectories
Robots
Experiments

Cite this

@article{cec6578137ec471aacda56e0b334dd81,
title = "Startle stimuli reduce the internal model control in discrete movements",
abstract = "A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected {"}go{"} cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.",
author = "Wright, {Zachary A.} and Rogers, {Mark W.} and MacKinnon, {Colum D.} and Patton, {James L.}",
year = "2009",
language = "English (US)",
pages = "4590--4594",
journal = "Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Startle stimuli reduce the internal model control in discrete movements

AU - Wright, Zachary A.

AU - Rogers, Mark W.

AU - MacKinnon, Colum D.

AU - Patton, James L.

PY - 2009

Y1 - 2009

N2 - A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.

AB - A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.

UR - http://www.scopus.com/inward/record.url?scp=77951014739&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951014739&partnerID=8YFLogxK

M3 - Article

C2 - 19963846

AN - SCOPUS:77951014739

SP - 4590

EP - 4594

JO - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

JF - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

SN - 1557-170X

ER -