Standing internal tides in the Tasman sea observed by gliders

T. M. Shaun Johnston, Daniel L. Rudnick, Samuel M. Kelly

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Low-mode internal tides are generated at tall submarine ridges, propagate across the open ocean with little attenuation, and reach distant continental slopes. A semidiurnal internal tide beam, identified in previous altimetric observations and modeling, emanates from the Macquarie Ridge, crosses the Tasman Sea, and impinges on the Tasmanian slope. Spatial surveys covering within 150 km of the slope by two autonomous underwater gliders with maximum profile depths of 500 and 1000 m show the steepest slope near 43°S reflects almost all of the incident energy flux to form a standing wave. Starting from the slope and moving offshore by one wavelength (~150 km), potential energy density displays an antinode-node-antinode-node structure, while kinetic energy density shows the opposite. Mission-mean mode-1 incident and reflected flux magnitudes are distinguished by treating each glider's survey as an internal wave antenna for measuring amplitude, wavelength, and direction. Incident fluxes are 1.4 and 2.3 kW m-1 from the two missions, while reflected fluxes are 1.2 and 1.8 kW m-1. From one glider surveying the region of highest energy at the steepest slope, the reflectivity estimates are 0.8 and 1, if one considers the kinetic and potential energy densities separately. These results are in agreement with mode-1 reflectivity of 0.7-1 from a model in one horizontal dimension with realistic topography and stratification. The direction of the incident internal tides is consistent with altimetry and modeling, while the reflected tide is consistent with specular reflection from a straight coastline.

Original languageEnglish (US)
Pages (from-to)2715-2737
Number of pages23
JournalJournal of Physical Oceanography
Issue number11
StatePublished - 2015

Bibliographical note

Publisher Copyright:
© 2015 American Meteorological Society.


  • Atm/Ocean Structure/ Phenomena
  • Circulation/ Dynamics
  • In situ oceanic observations
  • Internal waves
  • Model comparison
  • Models and modeling
  • Observational techniques and algorithms
  • Tides
  • Topographic effects


Dive into the research topics of 'Standing internal tides in the Tasman sea observed by gliders'. Together they form a unique fingerprint.

Cite this