TY - JOUR
T1 - Stability of pressure-driven creeping flows in channels lined with a nonlinear elastic solid
AU - Gkanis, Vasileios
AU - Kumar, Satish
PY - 2005/2/10
Y1 - 2005/2/10
N2 - The effect of pressure gradients on the stability of creeping flows of Newtonian fluids in channels lined with an incompressible and impermeable neo-Hookean material is examined in this work. Three different configurations are considered: (i) pressure-driven flow between a rigid wall and a wall lined with a neo-Hookean material; (ii) pressure-driven flow between neo-Hookean-lined walls; and (iii) combined Couette-Poiseuille flow between a rigid wall and a neo-Hookean-lined wall. In each case, a first normal stress difference whose magnitude depends on depth arises in the base state for the solid, and linear stability analysis reveals that this leads to a shortwave instability which is removed by the presence of interfacial tension. For sufficiently thick solids, low-wavenumber modes become unstable first as the applied strain increases above a critical value, whereas for sufficiently thin solids, high-wavenumber modes becomes unstable first. Comparison of the dimensionless critical strains shows that configurations (i) and (ii) are more difficult to destabilize than Couette flow past a neo-Hookean solid. For configuration (iii), the nonlinear elasticity of the solid leads to two physically distinct critical conditions, in contrast to what happens when a linear elastic material is used. The mechanisms underlying the behaviour of the critical strains are explained through an analysis of the interfacial boundary conditions.
AB - The effect of pressure gradients on the stability of creeping flows of Newtonian fluids in channels lined with an incompressible and impermeable neo-Hookean material is examined in this work. Three different configurations are considered: (i) pressure-driven flow between a rigid wall and a wall lined with a neo-Hookean material; (ii) pressure-driven flow between neo-Hookean-lined walls; and (iii) combined Couette-Poiseuille flow between a rigid wall and a neo-Hookean-lined wall. In each case, a first normal stress difference whose magnitude depends on depth arises in the base state for the solid, and linear stability analysis reveals that this leads to a shortwave instability which is removed by the presence of interfacial tension. For sufficiently thick solids, low-wavenumber modes become unstable first as the applied strain increases above a critical value, whereas for sufficiently thin solids, high-wavenumber modes becomes unstable first. Comparison of the dimensionless critical strains shows that configurations (i) and (ii) are more difficult to destabilize than Couette flow past a neo-Hookean solid. For configuration (iii), the nonlinear elasticity of the solid leads to two physically distinct critical conditions, in contrast to what happens when a linear elastic material is used. The mechanisms underlying the behaviour of the critical strains are explained through an analysis of the interfacial boundary conditions.
UR - http://www.scopus.com/inward/record.url?scp=14844324976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14844324976&partnerID=8YFLogxK
U2 - 10.1017/S0022112004002472
DO - 10.1017/S0022112004002472
M3 - Article
AN - SCOPUS:14844324976
SN - 0022-1120
VL - 524
SP - 357
EP - 375
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -