Square function estimates on layer potentials for higher-order elliptic equations

Ariel Barton, Steve Hofmann, Svitlana Mayboroda

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this paper we establish square-function estimates on the double and single layer potentials for divergence form elliptic operators, of arbitrary even order 2m, with variable t-independent coefficients in the upper half-space. This generalizes known results for variable-coefficient second-order operators, and also for constant-coefficient higher-order operators.

Original languageEnglish (US)
Pages (from-to)2459-2511
Number of pages53
JournalMathematische Nachrichten
Volume290
Issue number16
DOIs
StatePublished - Nov 2017

Bibliographical note

Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords

  • 35C15
  • Elliptic equation
  • Primary: 35J30; Secondary: 31B10
  • higher-order differential equation
  • layer potentials
  • square function estimates

Fingerprint

Dive into the research topics of 'Square function estimates on layer potentials for higher-order elliptic equations'. Together they form a unique fingerprint.

Cite this