SPLASH-SXDF Multi-wavelength Photometric Catalog

Vihang Mehta, Claudia Scarlata, Peter Capak, Iary Davidzon, Andreas Faisst, Bau Ching Hsieh, Olivier Ilbert, Matt Jarvis, Clotilde Laigle, John Phillips, John Silverman, Michael A. Strauss, Masayuki Tanaka, Rebecca Bowler, Jean Coupon, Sébastien Foucaud, Shoubaneh Hemmati, Daniel Masters, Henry Joy McCracken, Bahram MobasherMasami Ouchi, Takatoshi Shibuya, Wei Hao Wang

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

We present a multi-wavelength catalog in the Subaru/XMM-Newton Deep Field (SXDF) as part of the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We include the newly acquired optical data from the Hyper-Suprime-Cam Subaru Strategic Program, accompanied by IRAC coverage from the SPLASH survey. All available optical and near-infrared data is homogenized and resampled on a common astrometric reference frame. Source detection is done using a multi-wavelength detection image including the u-band to recover the bluest objects. We measure multi-wavelength photometry and compute photometric redshifts as well as physical properties for ∼1.17 million objects over ∼4.2 deg2, with ∼800,000 objects in the 2.4 deg2 HSC-Ultra-Deep coverage. Using the available spectroscopic redshifts from various surveys over the range of 0 < z < 6, we verify the performance of the photometric redshifts and we find a normalized median absolute deviation of 0.023 and outlier fraction of 3.2%. The SPLASH-SXDF catalog is a valuable, publicly available resource, perfectly suited for studying galaxies in the early universe and tracing their evolution through cosmic time.

Original languageEnglish (US)
Article number36
JournalAstrophysical Journal, Supplement Series
Volume235
Issue number2
DOIs
StatePublished - Apr 2018

Bibliographical note

Funding Information:
This work is based in part on observations obtained with MegaPrime and MegaCam, a joint project of CFHT and CEA/ IRFU, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada–France–Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

Funding Information:
This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

Funding Information:
V.M. would like to thank Micaela Bagley for a helpful discussion regarding the photometric errors. V.M. and C.S. acknowledge the support from Jet Propulsion Laboratory under the grant award #RSA-1516084. V.M. also acknowledges support from the University of Minnesota Doctoral Dissertation Fellowship 2016–17. W.H.W. acknowledges the support from the Ministry of Science and Technology of Taiwan grant 105-2112-M-001-029-MY3. O.I. acknowledges the funding of the French Agence Nationale de la Recherche for the SAGACE project.

Funding Information:
The Hyper-Suprime-Cam (HSC) collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University. The HSC instrumentation and software were developed by the National Astronomical Observatory of Japan (NAOJ), the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), the University of Tokyo, the High Energy Accelerator Research Organization (KEK), the Academia Sinica Institute for Astronomy and Astrophysics in Taiwan (ASIAA), and Princeton University. Funding was contributed by the FIRST program from Japanese Cabinet Office, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), the Toray Science Foundation, NAOJ, Kavli IPMU, KEK, ASIAA, and Princeton University.

Funding Information:
V.M. would like to thank Micaela Bagley for a helpful discussion regarding the photometric errors. V.M. and C.S. acknowledge the support from Jet Propulsion Laboratory under the grant award #RSA-1516084. V.M. also acknowledges support from the University of Minnesota Doctoral Dissertation Fellowship 2016-17. W.H.W. acknowledges the support from the Ministry of Science and Technology of Taiwan grant 105-2112-M- 001-029- MY3. O.I. acknowledges the funding of the French Agence Nationale de la Recherche for the SAGACE project. The Cosmic Dawn Center is funded by the Danish National Research Foundation. This work is based in part on data collected at the Subaru Telescope and retrieved from the HSC data archive system, which is operated by Subaru Telescope and Astronomy Data Center at National Astronomical Observatory of Japan. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The Hyper-Suprime-Cam (HSC) collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University. The HSC instrumentation and software were developed by the National Astronomical Observatory of Japan (NAOJ), the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), the University of Tokyo, the High Energy Accelerator Research Organization (KEK), the Academia Sinica Institute for Astronomy and Astrophysics in Taiwan (ASIAA), and Princeton University. Funding was contributed by the FIRST program from Japanese Cabinet Office, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), the Toray Science Foundation, NAOJ, Kavli IPMU, KEK, ASIAA, and Princeton University. This paper makes use of software developed for the Large Synoptic Survey Telescope. We thank the LSST Project for making their code available as free software at http://dm.lsst.org/. This work is based in part on observations obtained with MegaPrime and MegaCam, a joint project of CFHT and CEA/ IRFU, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Funding Information:
The Cosmic Dawn Center is funded by the Danish National Research Foundation.

Publisher Copyright:
© 2018. The American Astronomical Society. All rights reserved.

Keywords

  • catalogs
  • galaxies: high-redshift
  • galaxies: photometry
  • methods: observational
  • techniques: photometric

Fingerprint

Dive into the research topics of 'SPLASH-SXDF Multi-wavelength Photometric Catalog'. Together they form a unique fingerprint.

Cite this