Spin-Orbit Torque and Spin Hall Effect-Based Cellular Level Therapeutic Spintronic Neuromodulator: A Simulation Study

Kai Wu, Diqing Su, Renata Saha, Jian Ping Wang

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Artificial modulation of a neuronal subset through ion channels activation can initiate firing patterns of an entire neural circuit in vivo. As nanovalves in the cell membrane, voltage-gated ion channels can be artificially controlled by the electric field gradient that is caused by externally applied time varying magnetic fields. Herein, we theoretically investigate the feasibility of modulating neural activities by using magnetic spintronic nanostructures. An antiferromagnet/ferromagnet (AFM/FM) structure is explored as neuromodulator. For the FM layer with perpendicular magnetization, stable bidirectional magnetization switching can be achieved by applying in-plane currents through the AFM layer to induce the spin-orbit torque (SOT) due to the spin Hall effect (SHE). This spin-orbit torque neurostimulator (SOTNS) utilizes in-plane charge current pulses to switch the magnetization in the FM layer. The time changing magnetic stray field induces an electric field that modulates the surrounding neurons. The object oriented micromagnetic framework (OOMMF) is used to calculate space- and time-dependent magnetic dynamics of the SOTNS structure. The current-driven magnetization dynamics in the SOTNS has no mechanically moving parts. Furthermore, the size of the SOTNS can be down to tens of nanometers. Thus, arrays of SOTNSs could be fabricated, integrated together, and patterned on a flexible substrate, which gives us much more flexible control of the neuromodulation with cellular resolution.

Original languageEnglish (US)
Pages (from-to)24963-24972
Number of pages10
JournalJournal of Physical Chemistry C
Issue number40
StatePublished - Oct 10 2019

Bibliographical note

Funding Information:
This study was financially supported by the Institute of Engineering in Medicine of the University of Minnesota through FY18 IEM Seed Grant Funding Program, National Science Foundation MRSEC facility program, the Distinguished McKnight University Professorship, Centennial Chair Professorship, Robert F Hartmann Endowed Chair, and UROP program from the University of Minnesota.

Publisher Copyright:
© 2019 American Chemical Society.

Copyright 2019 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Spin-Orbit Torque and Spin Hall Effect-Based Cellular Level Therapeutic Spintronic Neuromodulator: A Simulation Study'. Together they form a unique fingerprint.

Cite this