TY - JOUR
T1 - Spin-Orbit Coupling and Admixture Coefficients in SA-CASSCF and MS-CASPT2, and Triplet Excitation Yield Simulated via Trajectory Surface Hopping and Calibrated SA-CASSCF in 1,2-Dioxetane Derivatives
AU - Zhou, Jian Ge
AU - Shu, Yinan
N1 - Publisher Copyright:
© 2025 The Authors. Published by American Chemical Society.
PY - 2025/2/6
Y1 - 2025/2/6
N2 - The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G. The magnitude of the singlet-triplet mixing positively correlates to the hopping probability between the mixed singlet and triplet states, which is confirmed by the computed S-T transition probability.
AB - The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G. The magnitude of the singlet-triplet mixing positively correlates to the hopping probability between the mixed singlet and triplet states, which is confirmed by the computed S-T transition probability.
UR - http://www.scopus.com/inward/record.url?scp=85216259018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85216259018&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.4c04639
DO - 10.1021/acs.jpca.4c04639
M3 - Article
C2 - 39863993
AN - SCOPUS:85216259018
SN - 1089-5639
VL - 129
SP - 1195
EP - 1206
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 5
ER -