Spin-Hall-Effect-Based Stochastic Number Generator for Parallel Stochastic Computing

Jiaxi Hu, Bingzhe Li, Cong Ma, David Lilja, Steven J. Koester

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Stochastic computing (SC) is a promising technology that can be used for low-cost hardware designs. However, SC suffers from its long latency. Although parallel processing can efficiently shorten the latency, duplicated stochastic number generators (SNGs) are necessary, which cause substantial hardware overhead. This paper proposes a scalable SNG based on the spin-Hall-effect (SHE), which is capable of generating multiple independent stochastic streams simultaneously. The design takes advantages of the efficient charge-to-spin conversion from the Spin-Hall material and the intrinsic stochasticity of nanomagnets. Compared to previous spintronic SNGs, the SHE-SNG can reduce the area by 1.6×-7.8× and the power by 4.9×-13× while increasing the degree of parallelism from 1 to 16. Compared to CMOS-based SNGs, the proposed SNG obtained 24×-120× and 53× reduction in terms of area and power, respectively. Finally, three benchmarks were implemented, and the results indicate that SC implementations with the proposed SHE-SNG can achieve 1.2×-29× reduction of hardware resources compared to implementations with previous CMOS-and spintronic-based designs while scaling the degree of parallelism from 1 to 64.

Original languageEnglish (US)
Article number8741170
Pages (from-to)3620-3627
Number of pages8
JournalIEEE Transactions on Electron Devices
Volume66
Issue number8
DOIs
StatePublished - Aug 2019

Bibliographical note

Publisher Copyright:
© 1963-2012 IEEE.

Keywords

  • Parallel processing
  • spintronic
  • stochastic computing (SC)
  • stochastic number generator (SNG)

Fingerprint

Dive into the research topics of 'Spin-Hall-Effect-Based Stochastic Number Generator for Parallel Stochastic Computing'. Together they form a unique fingerprint.

Cite this