Spin-12 heisenberg antiferromagnet on an anisotropic kagome lattice

P. H.Y. Li, R. F. Bishop, C. E. Campbell, D. J.J. Farnell, O. Götze, J. Richter

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


We use the coupled-cluster method to study the zero-temperature properties of an extended two-dimensional Heisenberg antiferromagnet formed from spin-12 moments on an infinite spatially anisotropic kagome lattice of corner-sharing isosceles triangles, with nearest-neighbor bonds only. The bonds have exchange constants J1>0 along two of the three lattice directions and J2≡κJ1>0 along the third. In the classical limit, the ground-state (GS) phase for κ<12 has collinear ferrimagnetic (Néel) order where the J2-coupled chain spins are ferromagnetically ordered in one direction with the remaining spins aligned in the opposite direction, while for κ>12 there exists an infinite GS family of canted ferrimagnetic spin states, which are energetically degenerate. For the spin-12 case, we find that quantum analogs of both these classical states continue to exist as stable GS phases in some regions of the anisotropy parameter κ, namely, for 0<κ<κc1 for the Néel state and for (at least part of) the region κ>κc2 for the canted phase. However, they are now separated by a paramagnetic phase without either sort of magnetic order in the region κc1<κ<κc2, which includes the isotropic kagome point κ=1 where the stable GS phase is now believed to be a topological (Z2) spin liquid. Our best numerical estimates are κc1=0.515±0.015 and κc2= 1.82±0.03.

Original languageEnglish (US)
Article number214403
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number21
StatePublished - Dec 4 2012


Dive into the research topics of 'Spin-12 heisenberg antiferromagnet on an anisotropic kagome lattice'. Together they form a unique fingerprint.

Cite this