TY - JOUR
T1 - Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes
AU - Mattjus, Peter
AU - Malewicz, Barbara
AU - Valiyaveettil, Jacob T.
AU - Baumann, Wolfgang J.
AU - Bittman, Robert
AU - Brown, Rhoderick E
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2002/5/31
Y1 - 2002/5/31
N2 - The interrelationships among sphingolipid structure, membrane curvature, and glycosphingolipid transmembrane distribution remain poorly defined despite the emerging importance of sphingolipids in curved regions and vesicle buds of biomembranes. Here, we describe a novel approach to investigate the transmembrane distribution of galactosylceramide in phospholipid small unilamellar vesicles by 13C NMR spectroscopy. Quantitation of the transbilayer distribution of [6-13C]galactosylceramide (99.8% isotopic enrichment) was achieved by exposure of vesicles to the paramagnetic ion, Mn2+. The data show that [6-13C]galactosylceramide prefers (70%) the inner leaflet of phosphatidylcholine vesicles. Increasing the sphingomyelin content of the 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles shifted galactosylceramide from the inner to the outer leaflet. The amount of galactosylceramide localized in the inner leaflet decreased from 70% in pure 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles to only 40% in 1-palmitoyl-2-oleoyl-phosphatidylcholine/sphingomyelin (1:2) vesicles. The present study demonstrates that sphingomyelin can dramatically alter the transbilayer distribution of a monohexosylceramide, such as galactosylceramide, in 1-palmitoyl-2-oleoyl-phosphatidylcholine/sphingomyelin vesicles. The results suggest that sphingolipid-sphingolipid interactions that occur even in the absence of cholesterol play a role in controlling the transmembrane distributions of cerebrosides.
AB - The interrelationships among sphingolipid structure, membrane curvature, and glycosphingolipid transmembrane distribution remain poorly defined despite the emerging importance of sphingolipids in curved regions and vesicle buds of biomembranes. Here, we describe a novel approach to investigate the transmembrane distribution of galactosylceramide in phospholipid small unilamellar vesicles by 13C NMR spectroscopy. Quantitation of the transbilayer distribution of [6-13C]galactosylceramide (99.8% isotopic enrichment) was achieved by exposure of vesicles to the paramagnetic ion, Mn2+. The data show that [6-13C]galactosylceramide prefers (70%) the inner leaflet of phosphatidylcholine vesicles. Increasing the sphingomyelin content of the 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles shifted galactosylceramide from the inner to the outer leaflet. The amount of galactosylceramide localized in the inner leaflet decreased from 70% in pure 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles to only 40% in 1-palmitoyl-2-oleoyl-phosphatidylcholine/sphingomyelin (1:2) vesicles. The present study demonstrates that sphingomyelin can dramatically alter the transbilayer distribution of a monohexosylceramide, such as galactosylceramide, in 1-palmitoyl-2-oleoyl-phosphatidylcholine/sphingomyelin vesicles. The results suggest that sphingolipid-sphingolipid interactions that occur even in the absence of cholesterol play a role in controlling the transmembrane distributions of cerebrosides.
UR - http://www.scopus.com/inward/record.url?scp=0037205423&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037205423&partnerID=8YFLogxK
U2 - 10.1074/jbc.M201305200
DO - 10.1074/jbc.M201305200
M3 - Article
C2 - 11909867
AN - SCOPUS:0037205423
VL - 277
SP - 19476
EP - 19481
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 22
ER -