Spectrophotometric determination and computational evaluation of the rates of hydrolysis of 9-amino-substituted acridines

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Aminoacridines have a long history in the drug and dye industries and display a wide range of biological and physical properties. Despite the historical relevance of 9-aminoacridines, there have been few studies investigating their stability. 9-Aminoacridines are known to hydrolyze at the C 9-N 15 bond, yielding acridones. In this study, the pH-dependent hydrolysis rates of a series of 9-substituted aminoacridines are investigated. In addition, ground-state physical properties of the compounds are determined using ab initio quantum mechanics calculations to gain insight into the forces that drive hydrolysis. An analysis of the bond orders, bond dissociation energies, and conformational energies show that the rate of hydrolysis depends on two main factors: delocalization across the C 9-N 15 bond and steric effects. The computational results are applied to explain the change in experimental rates of hydrolysis going from primary to secondary and to tertiary substituted 9-aminoacridines. In the case of tertiary substituted amines, the calculations indicate the C 9-N 15 bond is forced into a more gauche-like conformation, greatly diminishing delocalization (as shown by reductions in bond orders and bond energy), which leads to rapid hydrolysis. A model of intramolecular hydrogen bonding is also presented, which explains the increased rate of hydrolysis observed for highly substituted compounds under acidic conditions.

Original languageEnglish (US)
Pages (from-to)876-883
Number of pages8
JournalJournal of Chemical Information and Modeling
Volume46
Issue number2
DOIs
StatePublished - Mar 1 2006

    Fingerprint

Cite this