Spectral Features Based Decoding of Task Engagement: The Role of Theta and High Gamma Bands in Cognitive Control

Satya Venkata Sandeep Avvaru, Nicole R. Provenza, Alik S. Widge, Keshab K. Parhi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This paper analyzes local field potentials (LFP) from 10 human subjects to discover frequency-dependent biomarkers of cognitive conflict. We utilize cortical and sub-cortical LFP recordings from the subjects during a cognitive task known as the Multi-Source Interference Task (MSIT). We decode the task engagement and discover biomarkers that may facilitate closed-loop neuromodulation to enhance cognitive control. First, we show that spectral power features in predefined frequency bands can be used to classify task and non-task segments with a median accuracy of 88.1%. Here the features are first ranked using the Bayes Factor and then used as inputs to subject-specific linear support vector machine classifiers. Second, we show that theta (4-8 Hz) band, and high gamma (65-200 Hz) band oscillations are modulated during the task performance. Third, by isolating time-series from specific brain regions of interest, we observe that a subset of the dorsolateral prefrontal cortex features is sufficient to decode the task states. The paper shows that cognitive control evokes robust neurological signatures, especially in the prefrontal cortex (PFC).

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

Fingerprint

Dive into the research topics of 'Spectral Features Based Decoding of Task Engagement: The Role of Theta and High Gamma Bands in Cognitive Control'. Together they form a unique fingerprint.

Cite this