Abstract
We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average νe and νx(x=μ,τ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of νe from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.
Original language | English (US) |
---|---|
Article number | 043005 |
Journal | Physical Review D |
Volume | 94 |
Issue number | 4 |
DOIs | |
State | Published - Aug 9 2016 |
Bibliographical note
Publisher Copyright:© 2016 American Physical Society.