Spatially resolved signature of quenching in star-forming galaxies

Salvatore Quai, Lucia Pozzetti, Michele Moresco, Annalisa Citro, Andrea Cimatti, Jarle Brinchmann, Madusha L.P. Gunawardhana, Mieke Paalvast

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Understanding when, how, and where star formation ceased (quenching) within galaxies is still a critical subject in galaxy evolution studies. Taking advantage of the new methodology developed by Quai et al. to select recently quenched galaxies, we explored the spatial information provided by the IFU data to get critical insights on this process. In particular, we analyse 10 SDSS-IV MaNGA galaxies that show regions with low [O III]/H α compatible with a recent quenching of the star formation. We compare the properties of these 10 galaxies with those of a control sample of 8 MaNGA galaxies with ongoing star formation in the same stellar mass, redshift, and gas-phase metallicity range. The quenching regions found are located between 0.5 and 1.1 effective radii from the centre. This result is supported by the analysis of the average radial profile of the ionization parameter, which reaches a minimum at the same radii, while the one of the star-forming sample shows an almost flat trend. These quenching regions occupy a total area between ∼ 15 and 45 per cent of our galaxies. Moreover, the average radial profile of the star formation rate surface density of our sample is lower and flatter than that of the control sample, at any radii, suggesting a systematic suppression of the star formation in the inner part of our galaxies. Finally, the radial profiles of gas-phase metallicity of the two samples have a similar slope and normalization. Our results cannot be ascribed to a difference in the intrinsic properties of the analysed galaxies, suggesting a quenching scenario more complicated than a simple inside-out quenching.

Original languageEnglish (US)
Pages (from-to)2347-2366
Number of pages20
JournalMonthly Notices of the Royal Astronomical Society
Volume490
Issue number2
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 The Author(s)

Keywords

  • Galaxies: ISM
  • Galaxies: evolution
  • Galaxies: general
  • ISM: evolution

Fingerprint

Dive into the research topics of 'Spatially resolved signature of quenching in star-forming galaxies'. Together they form a unique fingerprint.

Cite this