Spatial tuning of electrophysiological responses to multisensory stimuli reveals a primitive coding of the body boundaries in newborns

Irene Ronga, Mattia Galigani, Valentina Bruno, Jean Paul Noel, Andrea Gazzin, Cristina Perathoner, Andrea Serino, Francesca Garbarini

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The ability to identify our own body and its boundaries is crucial for survival. Ideally, the sooner we learn to discriminate external stimuli occurring close to our body from those occurring far from it, the better (and safer) we may interact with the sensory environment. However, when this mechanism emerges within ontogeny is unknown. Is it something acquired throughout infancy, or is it already present soon after birth? The presence of a spatial modulation of multisensory integration (MSI) is considered a hallmark of a functioning representation of the body position in space. Here, we investigated whether MSI is present and spatially organized in 18- to 92-h-old newborns. We compared electrophysiological responses to tactile stimulation when concurrent auditory events were delivered close to, as opposed to far from, the body in healthy newborns and in a control group of adult participants. In accordance with previous studies, adult controls showed a clear spatial modulation of MSI, with greater superadditive responses for multisensory stimuli close to the body. In newborns, we demonstrated the presence of a genuine electrophysiological pattern of MSI, with older newborns showing a larger MSI effect. Importantly, as for adults, multisensory superadditive responses were modulated by the proximity to the body. This finding may represent the electrophysiological mechanism responsible for a primitive coding of bodily self boundaries, thus suggesting that even just a few hours after birth, human newborns identify their own body as a distinct entity from the environment.

Original languageEnglish (US)
Article numbere2024548118
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Issue number12
DOIs
StatePublished - Mar 23 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.

Keywords

  • Body representation
  • ERP
  • Multisensory integration
  • Newborns
  • Peripersonal space

Fingerprint

Dive into the research topics of 'Spatial tuning of electrophysiological responses to multisensory stimuli reveals a primitive coding of the body boundaries in newborns'. Together they form a unique fingerprint.

Cite this