TY - JOUR
T1 - Spatial frequency masking in human vision
T2 - binocular interactions.
AU - Legge, G. E.
PY - 1979/6
Y1 - 1979/6
N2 - Binocular contrast interactions in human vision were studied psychophysically. Thresholds were obtained for sinewave grating stimulation of the right eye in the presence of simultaneous masking gratings presented to the right eye (monocular masking) or left eye (dichoptic masking). In the first experiment, thresholds were measured at 0.25, 1.0, 4.0, and 16.0 cycle per degree (cpd) as a function of the contrast of masking gratings of identical frequency and phase. Thresholds rose nonmonotonically with masking contrast. At medium and high contrast levels, dichoptic masking was more effective in elevating contrast thresholds than monocular masking, and approached Weber's Law behavior. In the second experiment, spatial frequency tuning functions were obtained for test gratings at five spatial frequencies, by measuring threshold elevation as a function of the spatial frequency of constant-contrast masking gratings. At 1.0, 4.0, and 16.0 cpd, the tuning functions peaked at the test frequencies. The dichoptic tuning functions had a bandwidth of about 1 octave between half-maximum points, narrower than +/- 1 octave bandwidths of the monocular tuning functions. At 0.125 and 0.25 cpd, the tuning functions were broader and exhibited a shift in peak masking to frequencies above the test frequencies.
AB - Binocular contrast interactions in human vision were studied psychophysically. Thresholds were obtained for sinewave grating stimulation of the right eye in the presence of simultaneous masking gratings presented to the right eye (monocular masking) or left eye (dichoptic masking). In the first experiment, thresholds were measured at 0.25, 1.0, 4.0, and 16.0 cycle per degree (cpd) as a function of the contrast of masking gratings of identical frequency and phase. Thresholds rose nonmonotonically with masking contrast. At medium and high contrast levels, dichoptic masking was more effective in elevating contrast thresholds than monocular masking, and approached Weber's Law behavior. In the second experiment, spatial frequency tuning functions were obtained for test gratings at five spatial frequencies, by measuring threshold elevation as a function of the spatial frequency of constant-contrast masking gratings. At 1.0, 4.0, and 16.0 cpd, the tuning functions peaked at the test frequencies. The dichoptic tuning functions had a bandwidth of about 1 octave between half-maximum points, narrower than +/- 1 octave bandwidths of the monocular tuning functions. At 0.125 and 0.25 cpd, the tuning functions were broader and exhibited a shift in peak masking to frequencies above the test frequencies.
UR - http://www.scopus.com/inward/record.url?scp=0018483999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0018483999&partnerID=8YFLogxK
U2 - 10.1364/JOSA.69.000838
DO - 10.1364/JOSA.69.000838
M3 - Article
C2 - 490227
AN - SCOPUS:0018483999
SN - 0030-3941
VL - 69
SP - 838
EP - 847
JO - Journal of the Optical Society of America
JF - Journal of the Optical Society of America
IS - 6
ER -