Sparse scattered high performance computing data driven artificial neural networks for multi-dimensional optimization of buoyancy driven heat and mass transfer in porous structures

Yan Su, Tiniao Ng, Zhigang Li, Jane H. Davidson

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

An artificial intelligence (AI) enhanced optimization framework is developed to reduce computational costs for evaluating transport performance of buoyancy driven heat and mass transfer in porous structures. The present optimization framework integrates prediction with artificial neural networks (ANNs), optimization with the weighted objective function, and physics-based simulations with high performance computing (HPC). Multi-dimensional governing parameters and objectives are investigated by ANNs with sparse scattered training data obtained from HPC with controllable structure generation scheme (CSGS) and parallel non-dimensional lattice Boltzmann method (P-NDLBM). The macroscopic prediction results based on ANNs are validated by comparison with HPC results. Full maps of the objective function values versus structure and physical parameters are illustrated. The maximum objective function value subjected to constraints is obtained together with the corresponding optimal structure and physical parameters. The optimal parameters are further applied in HPC to obtain mesoscopic physical fields. The underlying mechanism is also revealed by comparing the physical fields with optimal and off-optimal parameters.

Original languageEnglish (US)
Article number125257
JournalChemical Engineering Journal
Volume397
DOIs
StatePublished - Oct 1 2020

Bibliographical note

Funding Information:
Yan Su's study was supported by the Solar Energy Laboratory of University of Macau under projects from the sponsorship of Science and Technology Development Fund, Macao SAR (FDCT) with No. FDCT/0115/2018/A3 and from University of Macau No. MYRG2017-00003-FST and MYRG2018-00018-FST. Prof. Li's study was partly supported by the University of Macau distinguished visiting scholar programme 2019. Also thanks ICTO of University of Macau for services of the HPC center.

Funding Information:
Yan Su’s study was supported by the Solar Energy Laboratory of University of Macau under projects from the sponsorship of Science and Technology Development Fund, Macao SAR (FDCT) with No. FDCT/0115/2018/A3 and from University of Macau No. MYRG2017-00003-FST and MYRG2018-00018-FST. Prof. Li’s study was partly supported by the University of Macau distinguished visiting scholar programme 2019. Also thanks ICTO of University of Macau for services of the HPC center.

Publisher Copyright:
© 2020 Elsevier B.V.

Keywords

  • Artificial neural network
  • Controllable structure generation scheme
  • High performance computing
  • Objective function
  • Parallel non-dimensional lattice Boltzmann method

Fingerprint Dive into the research topics of 'Sparse scattered high performance computing data driven artificial neural networks for multi-dimensional optimization of buoyancy driven heat and mass transfer in porous structures'. Together they form a unique fingerprint.

Cite this