TY - JOUR
T1 - Solute flow and particle transport in aquatic ecosystems
T2 - A review on the effect of emergent and rigid vegetation
AU - Yang, Judy Q.
N1 - Publisher Copyright:
© 2024 The Author
PY - 2024/9
Y1 - 2024/9
N2 - In-channel vegetation is ubiquitous in aquatic environments and plays a critical role in the fate and transport of solutes and particles in aquatic ecosystems. Recent studies have advanced our understanding of the role of vegetation in solute flow and particle transport in aquatic ecosystems. This review summarizes these papers and discusses the impacts of emergent and rigid vegetation on the surface flow, the advection and dispersion of solutes, suspended load transport, bedload transport, and hyporheic exchange. The two competing effects of emergent vegetation on the above transport processes are discussed. On the one hand, emergent vegetation reduces mean flow velocity at the same surface slope, which reduces mass transport. On the other hand, at the same mean flow velocity, vegetation generates turbulence, which enhances mass transport. Mechanistic understanding of these two competing effects and predictive equations derived from laboratory experiments are discussed. Predictive equations for the mean flow velocity and turbulent kinetic energy inside an emergent vegetation canopy are derived based on force and energy balance. The impacts of emergent vegetation on the advection-dispersion process, the suspended load and bedload transport, and the hyporheic exchange are summarized. The impacts of other vegetation-related factors, such as vegetation morphology, submergence, and flexibility, are briefly discussed. The role of vegetation in transporting other particles, such as micro- and macro-plastics, is also briefly discussed. Finally, suggestions for future research directions are proposed to advance the understanding of the dynamic interplays among natural vegetation, flow dynamics, and sedimentary processes.
AB - In-channel vegetation is ubiquitous in aquatic environments and plays a critical role in the fate and transport of solutes and particles in aquatic ecosystems. Recent studies have advanced our understanding of the role of vegetation in solute flow and particle transport in aquatic ecosystems. This review summarizes these papers and discusses the impacts of emergent and rigid vegetation on the surface flow, the advection and dispersion of solutes, suspended load transport, bedload transport, and hyporheic exchange. The two competing effects of emergent vegetation on the above transport processes are discussed. On the one hand, emergent vegetation reduces mean flow velocity at the same surface slope, which reduces mass transport. On the other hand, at the same mean flow velocity, vegetation generates turbulence, which enhances mass transport. Mechanistic understanding of these two competing effects and predictive equations derived from laboratory experiments are discussed. Predictive equations for the mean flow velocity and turbulent kinetic energy inside an emergent vegetation canopy are derived based on force and energy balance. The impacts of emergent vegetation on the advection-dispersion process, the suspended load and bedload transport, and the hyporheic exchange are summarized. The impacts of other vegetation-related factors, such as vegetation morphology, submergence, and flexibility, are briefly discussed. The role of vegetation in transporting other particles, such as micro- and macro-plastics, is also briefly discussed. Finally, suggestions for future research directions are proposed to advance the understanding of the dynamic interplays among natural vegetation, flow dynamics, and sedimentary processes.
UR - http://www.scopus.com/inward/record.url?scp=85193475912&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85193475912&partnerID=8YFLogxK
U2 - 10.1016/j.ese.2024.100429
DO - 10.1016/j.ese.2024.100429
M3 - Review article
C2 - 38860122
AN - SCOPUS:85193475912
SN - 2666-4984
VL - 21
JO - Environmental Science and Ecotechnology
JF - Environmental Science and Ecotechnology
M1 - 100429
ER -