Abstract
In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load. Stoichiometric load steps showed minimal soot emissions while ash-mode emissions spike dramatically due to oil consumption caused by piston ring adjustment. Correlation of PN to PM for steady state stoichiometric cases was in good agreement with that reported from multiple prior studies for both diesel and stoichiometric GDI engines. However, the lean cases resulted in higher PN to PM ratios indicating more small particles per unit mass. High ash particle concentration, especially in lean operation illustrates that oil control is important for mitigating impacts on downstream gasoline particulate filters (GPF) from which ash particles are cannot be removed during filter regeneration. Further research is necessary to elucidate the origin and composition of sub-23 nm particles from GDI engines and their effect on aftertreatment technology if lean homogeneous modes are to be employed.
Original language | English (US) |
---|---|
Journal | SAE Technical Papers |
Volume | 2018-April |
DOIs | |
State | Published - Jan 1 2018 |
Event | 2018 SAE World Congress Experience, WCX 2018 - Detroit, United States Duration: Apr 10 2018 → Apr 12 2018 |
Fingerprint
Cite this
Solid Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation. / Bock, Noah; Jeon, Joonho; Kittelson, David B; Northrop, William.
In: SAE Technical Papers, Vol. 2018-April, 01.01.2018.Research output: Contribution to journal › Conference article
}
TY - JOUR
T1 - Solid Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation
AU - Bock, Noah
AU - Jeon, Joonho
AU - Kittelson, David B
AU - Northrop, William
PY - 2018/1/1
Y1 - 2018/1/1
N2 - In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load. Stoichiometric load steps showed minimal soot emissions while ash-mode emissions spike dramatically due to oil consumption caused by piston ring adjustment. Correlation of PN to PM for steady state stoichiometric cases was in good agreement with that reported from multiple prior studies for both diesel and stoichiometric GDI engines. However, the lean cases resulted in higher PN to PM ratios indicating more small particles per unit mass. High ash particle concentration, especially in lean operation illustrates that oil control is important for mitigating impacts on downstream gasoline particulate filters (GPF) from which ash particles are cannot be removed during filter regeneration. Further research is necessary to elucidate the origin and composition of sub-23 nm particles from GDI engines and their effect on aftertreatment technology if lean homogeneous modes are to be employed.
AB - In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load. Stoichiometric load steps showed minimal soot emissions while ash-mode emissions spike dramatically due to oil consumption caused by piston ring adjustment. Correlation of PN to PM for steady state stoichiometric cases was in good agreement with that reported from multiple prior studies for both diesel and stoichiometric GDI engines. However, the lean cases resulted in higher PN to PM ratios indicating more small particles per unit mass. High ash particle concentration, especially in lean operation illustrates that oil control is important for mitigating impacts on downstream gasoline particulate filters (GPF) from which ash particles are cannot be removed during filter regeneration. Further research is necessary to elucidate the origin and composition of sub-23 nm particles from GDI engines and their effect on aftertreatment technology if lean homogeneous modes are to be employed.
UR - http://www.scopus.com/inward/record.url?scp=85045530408&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045530408&partnerID=8YFLogxK
U2 - 10.4271/2018-01-0359
DO - 10.4271/2018-01-0359
M3 - Conference article
AN - SCOPUS:85045530408
VL - 2018-April
JO - SAE Technical Papers
JF - SAE Technical Papers
SN - 0148-7191
ER -