Abstract
Synchronous reluctance (SynR) motor technology is promising to realize rare-earth material-free electric machines. However, structural challenges limit operation speed and subsequently power density compared to machines with rare-earth permanent magnets. This paper proposes and investigates multi-material additive manufacturing (MMAM) as a key-enabler to realize power-dense SynR machines. It does so by guiding magnetic flux through a solid rotor component by selective placement of magnetic and non-magnetic materials to enable high-speed operation. To validate this concept, samples are manufactured using a MMAM process and experimentally characterized to assess the structural and magnetic properties that can be expected for the proposed rotors. The data is then used in a multi-physics modeling framework to explore the design space of new MMAM rotor concepts. The simulated results in this paper reveal that MMAM technology can enable a 4x increase in rotor speed, resulting in 400 % power density improvements. The MMAM rotors achieved tip speeds of approximately 300 m/s and rotational speeds over 55 kRPM at comparable efficiencies to conventional designs, despite the presence of existing MMAM geometry restrictions. This study ultimately demonstrates that MMAM technology has the potential to enhance SynR machine operation speed and power density, making it a valuable option for high-performance applications.
Original language | English (US) |
---|---|
Title of host publication | 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3965-3972 |
Number of pages | 8 |
ISBN (Electronic) | 9798350316445 |
DOIs | |
State | Published - 2023 |
Externally published | Yes |
Event | 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 - Nashville, United States Duration: Oct 29 2023 → Nov 2 2023 |
Publication series
Name | 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 |
---|
Conference
Conference | 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 |
---|---|
Country/Territory | United States |
City | Nashville |
Period | 10/29/23 → 11/2/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- 3D printed electric machines
- additive manufacturing
- multi-material additive manufacturing
- optimization
- power density
- synchronous reluctance