Abstract
Herein, we present a solar-blind ultraviolet photodetector realized using atomic layer-deposited p-type cuprous oxide (Cu2O) underneath a mechanically exfoliated n-type β-gallium oxide (β-Ga2O3) nanomembrane. The atomic layer deposition process of the Cu2O film applies bis(N,N′-di-secbutylacetamidinato)dicopper(I) [Cu(5Bu-Me-amd)]2 as a novel Cu precursor and water vapor as an oxidant. The exfoliated β-Ga2O3 nanomembrane was transferred to the top of the Cu2O layer surface to realize a unique oxide pn heterojunction, which is not easy to realize by conventional oxide epitaxy techniques. The current-voltage (I-V) characteristics of the fabricated pn heterojunction diode show the typical rectifying behavior. The fabricated Cu2O/β-Ga2O3 photodetector achieves sensitive detection of current at the picoampere scale in the reverse mode. This work provides a new approach to integrate all oxide heterojunctions using membrane transfer and bonding techniques, which goes beyond the limitation of conventional heteroepitaxy.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 20756-20761 |
| Number of pages | 6 |
| Journal | ACS Omega |
| Volume | 4 |
| Issue number | 24 |
| DOIs | |
| State | Published - Dec 10 2019 |
| Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 American Chemical Society.