Soil carbon sequestration accelerated by restoration of grassland biodiversity

Yi Yang, David Tilman, George N Furey, Clarence Lehman

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

Agriculturally degraded and abandoned lands can remove atmospheric CO 2 and sequester it as soil organic matter during natural succession. However, this process may be slow, requiring a century or longer to re-attain pre-agricultural soil carbon levels. Here, we find that restoration of late-successional grassland plant diversity leads to accelerating annual carbon storage rates that, by the second period (years 13–22), are 200% greater in our highest diversity treatment than during succession at this site, and 70% greater than in monocultures. The higher soil carbon storage rates of the second period (years 13–22) are associated with the greater aboveground production and root biomass of this period, and with the presence of multiple species, especially C4 grasses and legumes. Our results suggest that restoration of high plant diversity may greatly increase carbon capture and storage rates on degraded and abandoned agricultural lands.

Original languageEnglish (US)
Article number718
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

Bibliographical note

Funding Information:
We thank the Global Climate and Energy Project (GCEP) and the NSF LTER program (DEB-0620652 and DEB-1234162) for funding this research, Troy Mielke for coordinating data collection, and Dan Bahauddin for data management.

Publisher Copyright:
© 2019, The Author(s).

Fingerprint Dive into the research topics of 'Soil carbon sequestration accelerated by restoration of grassland biodiversity'. Together they form a unique fingerprint.

Cite this