Abstract
Many HIV strains downregulate the levels of CD4 receptor on the surface of infected cells to prevent superinfection. In contrast, the rare HIV-2 UC1 strain is noncytopathic and has no effect on CD4 expression in infected cells but still replicates as efficiently as more cytopathic strains in peripheral blood mononuclear cells (PBMCs). Here, we show that HIV-2 UC1 Env interactions with the CD4 receptor exhibit slow association kinetics, whereas the dissociation kinetics is within the range of cytopathic strains. Despite the resulting 10- to 100-fold decrease in binding affinity, HIV-2 UC1 Envs exhibit long-lived activation state and efficient fusion activity. These observations suggest that HIV-2 UC1 Envs evolved to balance low affinity with an improved and readily triggerable molecular machinery to mediate entry. Resistance to cold exposure, similar to many primary HIV-1 isolates, and to sCD4 neutralization suggests that HIV-2 UC1 Envs preferentially sample a closed Env conformation. Our data provide insights into the mechanism of HIV entry.
Original language | English (US) |
---|---|
Article number | 107749 |
Journal | Cell reports |
Volume | 31 |
Issue number | 10 |
DOIs | |
State | Published - Jun 9 2020 |
Bibliographical note
Publisher Copyright:© 2020 The Author(s)
Keywords
- HIV envelope glycoproteins
- binding kinetics
- long-lived activation state
- molecular mechanism of HIV entry