Size of process zone in fracture testing of rock

A. Tarokh, A. Fakhimi, J. F. Labuz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Fracture of rock involves the formation of a localized region of damage called the process zone, which influences size effects on strength and stability. To study the development of the process zone in rock, physical and numerical experiments are conducted using a three point bending test on beams without a notch. A discrete element model with softening of normal (tensile) bonds is used to capture the quasi-brittle behavior. In the simulations, the normal bond is gradually reduced by increasing the relative normal displacement at the contact point of two particles. The slope of the softening line is assumed to be a material property. It is shown that this property can affect the dimensions of the process zone. The numerical results are compared with some physical experiments with acoustic emission monitoring. Both experimental and numerical results suggest that as the material becomes less brittle, which means a larger process zone, the size of process zone becomes more dependent on the specimen size. Fracture characteristics are size independent only for brittle materials (a small process zone).

Original languageEnglish (US)
Title of host publication46th US Rock Mechanics / Geomechanics Symposium 2012
Pages1741-1747
Number of pages7
StatePublished - Dec 1 2012
Event46th US Rock Mechanics / Geomechanics Symposium 2012 - Chicago, IL, United States
Duration: Jun 24 2012Jun 27 2012

Publication series

Name46th US Rock Mechanics / Geomechanics Symposium 2012
Volume3

Other

Other46th US Rock Mechanics / Geomechanics Symposium 2012
Country/TerritoryUnited States
CityChicago, IL
Period6/24/126/27/12

Fingerprint

Dive into the research topics of 'Size of process zone in fracture testing of rock'. Together they form a unique fingerprint.

Cite this