TY - JOUR
T1 - Sites of relativistic particle acceleration in supernova remnant
AU - Cassiopeia, A.
AU - Anderson, M. C.
AU - Rudnick, L.
PY - 1996
Y1 - 1996
N2 - We have determined the synchrotron spectral indices of 304 compact radio knots in the supernova remnant Cassiopeia A. A comparison of these data with the dynamical and brightness properties of these knots tabulated by Anderson & Rudnick indicates that spectral index shows a significant correlation with projected radius from the center of the remnant. Spectrally flat knots reside in a shell coincident with the bright radio ring, while steeper knots occupy a shell coincident with the diffuse radio plateau surrounding the ring. To a lesser extent, we find spectral index to be correlated also with the radio brightness of the knot, in the sense that brighter knots tend to have steeper spectra. No significant correlation is found between spectral index and knot deceleration or rate of brightness change. As the synchrotron spectral index traces the distribution of energy among relativistic particle populations, we use these results to study the nature of particle acceleration mechanisms active in Cas A. Given the dualshell nature of the spectral index distribution in Cas A and the lack of strong correlation between spectral index and dynamical properties of the knots, we conclude that radio-bright compact features are not sites of currently active particle acceleration in Cas A. This conclusion is in agreement with models of supersonic gaseous bullets constructed by Jones, Kang, & Tregillis. In these models, the marked synchrotron brightening which accompanies bullet deceleration is due primarily to preexisting relativistic particles radiating in rapidly amplifying shear-layer magnetic fields, rather than a large infusion of new relativistic particles accelerated in situ. Spectral variations between compact features in Cas A are more likely to reflect modulations in the background particle energy spectra within the remnant, perhaps instilled by temperature variations in the underlying thermal material. This interpretation requires that the diffuse synchrotron emission show the same spectral variations as seen in compact features; preliminary indications suggest that this is the case.
AB - We have determined the synchrotron spectral indices of 304 compact radio knots in the supernova remnant Cassiopeia A. A comparison of these data with the dynamical and brightness properties of these knots tabulated by Anderson & Rudnick indicates that spectral index shows a significant correlation with projected radius from the center of the remnant. Spectrally flat knots reside in a shell coincident with the bright radio ring, while steeper knots occupy a shell coincident with the diffuse radio plateau surrounding the ring. To a lesser extent, we find spectral index to be correlated also with the radio brightness of the knot, in the sense that brighter knots tend to have steeper spectra. No significant correlation is found between spectral index and knot deceleration or rate of brightness change. As the synchrotron spectral index traces the distribution of energy among relativistic particle populations, we use these results to study the nature of particle acceleration mechanisms active in Cas A. Given the dualshell nature of the spectral index distribution in Cas A and the lack of strong correlation between spectral index and dynamical properties of the knots, we conclude that radio-bright compact features are not sites of currently active particle acceleration in Cas A. This conclusion is in agreement with models of supersonic gaseous bullets constructed by Jones, Kang, & Tregillis. In these models, the marked synchrotron brightening which accompanies bullet deceleration is due primarily to preexisting relativistic particles radiating in rapidly amplifying shear-layer magnetic fields, rather than a large infusion of new relativistic particles accelerated in situ. Spectral variations between compact features in Cas A are more likely to reflect modulations in the background particle energy spectra within the remnant, perhaps instilled by temperature variations in the underlying thermal material. This interpretation requires that the diffuse synchrotron emission show the same spectral variations as seen in compact features; preliminary indications suggest that this is the case.
KW - Acceleration of particles
KW - Cosmic rays
KW - ISM: Individual (Cassiopeia A) -radiation mechanisms: Nonthermal
KW - Radio continuum: ISM - supernova remnants
UR - http://www.scopus.com/inward/record.url?scp=21844504159&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=21844504159&partnerID=8YFLogxK
U2 - 10.1086/176644
DO - 10.1086/176644
M3 - Article
AN - SCOPUS:21844504159
VL - 456
SP - 234
EP - 249
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0004-637X
IS - 1 PART I
ER -