Site-specific base changes in the coding or promoter region of the human β- and γ-globin genes by single-stranded oligonucleotides

Wenxuan Yin, Betsy T. Kren, Clifford J Steer

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


SSOs (single-stranded oligonucleotides) can mediate site-specific alteration of base-pairs in episomal and chromosomal target genes in mammalian cells. The TNE (targeted nucleotide exchange) can result in either repair or mutation of a gene sequence and is mediated through endogenous DNA repair pathway(s). Thus the approach provides a technique for the treatment of monogenic disorders associated with specific point mutations such as SCD (sickle cell disease). We studied the potential application of SSOs for SCD by introducing either an A to T substitution at the sixth codon of the human β-globin gene (sickle locus) or a C to G mutation at -202 of the Gγ-globin gene promoter region. The latter TNE is an alternative strategy to ameliorate the clinical manifestations of sickle cell anaemia by re-activating fetal haemoglobin gene expression in adult erythrocytes. A sensitive and valid PCR assay system was developed, which allows detection of point mutations as low as 0.01% at these sites. Using this system, TNE between 0.01 and 0.1% at the sickle locus or γ-globin gene promoter region was detected after transfection with SSOs in cultured human cell lines. TNE in the Gγ-globin promoter region exhibited varying degrees of strand bias that was dependent on SSO design and the cell's DNA mismatch repair activity. The results suggest that the endogenous DNA repair machinery may permit SSO correction of the sickle defect by modification of the β- and/or γ-globin genes.

Original languageEnglish (US)
Pages (from-to)253-261
Number of pages9
JournalBiochemical Journal
Issue number1
StatePublished - Aug 15 2005


  • Globin gene
  • Mismatch repair
  • Sickle cell
  • Single-stranded oligonucleotide
  • Site-specific base
  • β-thalassaemia


Dive into the research topics of 'Site-specific base changes in the coding or promoter region of the human β- and γ-globin genes by single-stranded oligonucleotides'. Together they form a unique fingerprint.

Cite this