Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework

Zhanyong Li, Neil M. Schweitzer, Aaron B. League, Varinia Bernales, Aaron W. Peters, Andrew Bean Getsoian, Timothy C. Wang, Jeffrey T. Miller, Aleksei Vjunov, John L. Fulton, Johannes A. Lercher, Christopher J. Cramer, Laura Gagliardi, Joseph T. Hupp, Omar K. Farha

Research output: Contribution to journalArticlepeer-review

284 Scopus citations

Abstract

Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

Original languageEnglish (US)
Pages (from-to)1977-1982
Number of pages6
JournalJournal of the American Chemical Society
Volume138
Issue number6
DOIs
StatePublished - Feb 17 2016

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

Fingerprint

Dive into the research topics of 'Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework'. Together they form a unique fingerprint.

Cite this