Single-crystal field-effect transistors of new Cl 2-NDI polymorph processed by sublimation in air

Tao He, Matthias Stolte, Christian Burschka, Nis Hauke Hansen, Thomas Musiol, Daniel Kälblein, Jens Pflaum, Xutang Tao, Jochen Brill, Frank Würthner

Research output: Contribution to journalArticlepeer-review

105 Scopus citations

Abstract

Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (β-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (α-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm 2 V -1 s -1 (α-phase) and up to 3.5 cm 2 V -1 s -1 (β-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on β-phase can be manufactured in air giving rise to electron mobilities of 0.37cm2 V -1 s -1. The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.

Original languageEnglish (US)
Article number5954
JournalNature communications
Volume6
DOIs
StatePublished - Jan 2015

Fingerprint Dive into the research topics of 'Single-crystal field-effect transistors of new Cl 2-NDI polymorph processed by sublimation in air'. Together they form a unique fingerprint.

Cite this