Simultaneous identification and correction of systematic error in bioenergetics models: Demonstration with a white crappie (Pomoxis annularis) model

Przemyslaw G. Bajer, Robert S. Hayward, Gregory W. Whitledge, Richard D. Zweifel

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Recent evidence indicates that important systematic error exists in many fish bioenergetics models (BEMs). An approach for identifying and correcting this error is demonstrated with a white crappie (Pomoxis annularis) BEM. Model-predicted trajectories of growth and cumulative consumption for 39 individual white crappie obtained from six 60-day laboratory experiments diverged from observed values by up to 42.5% and 227%, respectively, indicating systematic error in the BEM. To evaluate correlates of the systematic error, model prediction errors were regressed against three major input/output variables of BEMs that were covered by the laboratory experiments: fish body weight (80-341 g), temperature (23-30 °C), and consumption level (0.5%-6.2% daily). Consumption level explained >80% of the prediction error for growth and consumption. Two multiple regression equations containing body weight, temperature, and consumption variables were developed to estimate growth prediction error (R2 = 0.96) and consumption prediction error (R 2 = 0.86), and incorporated into the white crappie BEM to correct its predictions. Cross-validation indicated that growth and consumption prediction error was reduced 2- to 4-fold by correction. Given recent evidence of widespread systematic error and increasing application rates of BEMs, the efficient error-identification and -correction approach described appears broadly applicable and timely.

Original languageEnglish (US)
Pages (from-to)2168-2182
Number of pages15
JournalCanadian Journal of Fisheries and Aquatic Sciences
Volume61
Issue number11
DOIs
StatePublished - Nov 2004
Externally publishedYes

Fingerprint Dive into the research topics of 'Simultaneous identification and correction of systematic error in bioenergetics models: Demonstration with a white crappie (Pomoxis annularis) model'. Together they form a unique fingerprint.

Cite this