Simulation of size segregation in granular flow with material point method

Minglong Fei, Qicheng Sun, Kimberly Hill, Gordon G.D. Zhou

Research output: Contribution to journalConference article

Abstract

Segregation is common in granular flows consisting of mixtures of particles differing in size or density. In gravity-driven flows, both gradients in total pressure (induced by gravity) and gradients in velocity fluctuation fields (often associated with shear rate gradients) work together to govern the evolution of segregation. Since the local shear rate and velocity fluctuations are dependent on the local concentration of the components, understanding the co-evolution of segregation and flow is critical for understanding and predicting flows where there can be a variety of particle sizes and densities, such as in nature and industry. Kinetic theory has proven to be a robust framework for predicting this simultaneous evolution but has a limit in its applicability to dense systems where collisions are highly correlated. In this paper, we introduce a model that captures the coevolution of these evolving dynamics for high density gravity driven granular mixtures. For the segregation dynamics we use a recently developed mixture theory (Fan & Hill 2011, New J. Phys; Hill & Tan 2014, J. Fluid Mech.) which captures the combined effects of gravity and fluctuation fields on segregation evolution in high density granular flows. For the mixture flow dynamics, we use a recently proposed viscous-elastic-plastic constitutive model, which can describe the multi-state behaviors of granular materials, i.e. the granular solid, granular liquid and granular gas mechanical states (Fei et al. 2016, Powder Technol.). The platform we use for implementing this model is a modified Material Point Method (MPM), and we use discrete element method simulations of gravity-driven flow in an inclined channel to demonstrate that this new MPM model can predict the final segregation distribution as well as flow velocity profile well. We then discuss ongoing work where we are using this platform to test the effectiveness of particular segregation models under different boundary conditions.

Original languageEnglish (US)
Article number11010
JournalEPJ Web of Conferences
Volume140
DOIs
StatePublished - Jun 30 2017
Event8th International Conference on Micromechanics on Granular Media, Powders and Grains 2017 - Montpellier, France
Duration: Jul 3 2017Jul 7 2017

Fingerprint

gravitation
simulation
gradients
platforms
critical flow
shear
granular materials
kinetic theory
fans
plastics
flow velocity
velocity distribution
industries
boundary conditions
collisions
fluids
liquids
gases

Cite this

Simulation of size segregation in granular flow with material point method. / Fei, Minglong; Sun, Qicheng; Hill, Kimberly; Zhou, Gordon G.D.

In: EPJ Web of Conferences, Vol. 140, 11010, 30.06.2017.

Research output: Contribution to journalConference article

@article{3cf1ea12fd6b4b17b566f88febb4d521,
title = "Simulation of size segregation in granular flow with material point method",
abstract = "Segregation is common in granular flows consisting of mixtures of particles differing in size or density. In gravity-driven flows, both gradients in total pressure (induced by gravity) and gradients in velocity fluctuation fields (often associated with shear rate gradients) work together to govern the evolution of segregation. Since the local shear rate and velocity fluctuations are dependent on the local concentration of the components, understanding the co-evolution of segregation and flow is critical for understanding and predicting flows where there can be a variety of particle sizes and densities, such as in nature and industry. Kinetic theory has proven to be a robust framework for predicting this simultaneous evolution but has a limit in its applicability to dense systems where collisions are highly correlated. In this paper, we introduce a model that captures the coevolution of these evolving dynamics for high density gravity driven granular mixtures. For the segregation dynamics we use a recently developed mixture theory (Fan & Hill 2011, New J. Phys; Hill & Tan 2014, J. Fluid Mech.) which captures the combined effects of gravity and fluctuation fields on segregation evolution in high density granular flows. For the mixture flow dynamics, we use a recently proposed viscous-elastic-plastic constitutive model, which can describe the multi-state behaviors of granular materials, i.e. the granular solid, granular liquid and granular gas mechanical states (Fei et al. 2016, Powder Technol.). The platform we use for implementing this model is a modified Material Point Method (MPM), and we use discrete element method simulations of gravity-driven flow in an inclined channel to demonstrate that this new MPM model can predict the final segregation distribution as well as flow velocity profile well. We then discuss ongoing work where we are using this platform to test the effectiveness of particular segregation models under different boundary conditions.",
author = "Minglong Fei and Qicheng Sun and Kimberly Hill and Zhou, {Gordon G.D.}",
year = "2017",
month = "6",
day = "30",
doi = "10.1051/epjconf/201714011010",
language = "English (US)",
volume = "140",
journal = "EPJ Web of Conferences",
issn = "2101-6275",
publisher = "EDP Sciences",

}

TY - JOUR

T1 - Simulation of size segregation in granular flow with material point method

AU - Fei, Minglong

AU - Sun, Qicheng

AU - Hill, Kimberly

AU - Zhou, Gordon G.D.

PY - 2017/6/30

Y1 - 2017/6/30

N2 - Segregation is common in granular flows consisting of mixtures of particles differing in size or density. In gravity-driven flows, both gradients in total pressure (induced by gravity) and gradients in velocity fluctuation fields (often associated with shear rate gradients) work together to govern the evolution of segregation. Since the local shear rate and velocity fluctuations are dependent on the local concentration of the components, understanding the co-evolution of segregation and flow is critical for understanding and predicting flows where there can be a variety of particle sizes and densities, such as in nature and industry. Kinetic theory has proven to be a robust framework for predicting this simultaneous evolution but has a limit in its applicability to dense systems where collisions are highly correlated. In this paper, we introduce a model that captures the coevolution of these evolving dynamics for high density gravity driven granular mixtures. For the segregation dynamics we use a recently developed mixture theory (Fan & Hill 2011, New J. Phys; Hill & Tan 2014, J. Fluid Mech.) which captures the combined effects of gravity and fluctuation fields on segregation evolution in high density granular flows. For the mixture flow dynamics, we use a recently proposed viscous-elastic-plastic constitutive model, which can describe the multi-state behaviors of granular materials, i.e. the granular solid, granular liquid and granular gas mechanical states (Fei et al. 2016, Powder Technol.). The platform we use for implementing this model is a modified Material Point Method (MPM), and we use discrete element method simulations of gravity-driven flow in an inclined channel to demonstrate that this new MPM model can predict the final segregation distribution as well as flow velocity profile well. We then discuss ongoing work where we are using this platform to test the effectiveness of particular segregation models under different boundary conditions.

AB - Segregation is common in granular flows consisting of mixtures of particles differing in size or density. In gravity-driven flows, both gradients in total pressure (induced by gravity) and gradients in velocity fluctuation fields (often associated with shear rate gradients) work together to govern the evolution of segregation. Since the local shear rate and velocity fluctuations are dependent on the local concentration of the components, understanding the co-evolution of segregation and flow is critical for understanding and predicting flows where there can be a variety of particle sizes and densities, such as in nature and industry. Kinetic theory has proven to be a robust framework for predicting this simultaneous evolution but has a limit in its applicability to dense systems where collisions are highly correlated. In this paper, we introduce a model that captures the coevolution of these evolving dynamics for high density gravity driven granular mixtures. For the segregation dynamics we use a recently developed mixture theory (Fan & Hill 2011, New J. Phys; Hill & Tan 2014, J. Fluid Mech.) which captures the combined effects of gravity and fluctuation fields on segregation evolution in high density granular flows. For the mixture flow dynamics, we use a recently proposed viscous-elastic-plastic constitutive model, which can describe the multi-state behaviors of granular materials, i.e. the granular solid, granular liquid and granular gas mechanical states (Fei et al. 2016, Powder Technol.). The platform we use for implementing this model is a modified Material Point Method (MPM), and we use discrete element method simulations of gravity-driven flow in an inclined channel to demonstrate that this new MPM model can predict the final segregation distribution as well as flow velocity profile well. We then discuss ongoing work where we are using this platform to test the effectiveness of particular segregation models under different boundary conditions.

UR - http://www.scopus.com/inward/record.url?scp=85024131690&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024131690&partnerID=8YFLogxK

U2 - 10.1051/epjconf/201714011010

DO - 10.1051/epjconf/201714011010

M3 - Conference article

AN - SCOPUS:85024131690

VL - 140

JO - EPJ Web of Conferences

JF - EPJ Web of Conferences

SN - 2101-6275

M1 - 11010

ER -