Abstract
In earlier work, we developed a numerical model to simulate laser energy deposition in supersonic flows. In this paper, the numerical model was compared with experiments using the properties of the laser spark. The calibration of the model was improved upon by matching the energy absorbed by the spark with the experiments. This was done for different values of the input laser pulse energy and focal length of the converging lens. A pressure dependence factor was introduced into the model, so that the variation of the energy absorbed with ambient pressures was similar to that observed in the experiments. The electron density and the length of the spark of the simulations were found to be in good agreement with the experiments during the early stages of the spark evolution.
Original language | English (US) |
---|---|
Pages | 11713-11726 |
Number of pages | 14 |
State | Published - 2005 |
Event | 43rd AIAA Aerospace Sciences Meeting and Exhibit - Reno, NV, United States Duration: Jan 10 2005 → Jan 13 2005 |
Conference
Conference | 43rd AIAA Aerospace Sciences Meeting and Exhibit |
---|---|
Country/Territory | United States |
City | Reno, NV |
Period | 1/10/05 → 1/13/05 |