Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and DJ-1 in Caenorhabditis elegans

Rina Ved, Shamol Saha, Beth Westlund, Celine Perier, Lucinda Burnam, Anne Sluder, Marius Hoener, Cecilia M.P. Rodrigues, Aixa Alfonso, Clifford Steer, Leo Liu, Serge Przedborski, Benjamin Wolozin

Research output: Contribution to journalArticlepeer-review

212 Scopus citations

Abstract

How genetic and environmental factors interact in Parkinson disease is poorly understood. We have now compared the patterns of vulnerability and rescue of Caenorhabditis elegans with genetic modifications of three different genetic factors implicated in Parkinson disease (PD). We observed that expressing α-synuclein, deleting parkin (K08E3.7), or knocking down DJ-1 (B0432.2) or parkin produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than nontransgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben, or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (Fe(II) or Cu(II)), or etoposide compared with the nontransgenic nematodes. Each of the PD-related lines was also partially rescued by the antioxidant probucol, the mitochondrial complex II activator, D-β-hydroxybutyrate, or the anti-apoptotic bile acid tauroursodeoxycholic acid. Complete protection in all lines was achieved by combining D-β-hydroxybutyrate with tauroursodeoxycholic acid but not with probucol. These results show that diverse PD-related genetic modifications disrupt the mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD.

Original languageEnglish (US)
Pages (from-to)42655-42668
Number of pages14
JournalJournal of Biological Chemistry
Volume280
Issue number52
DOIs
StatePublished - Dec 30 2005

Fingerprint

Dive into the research topics of 'Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and DJ-1 in Caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this